Determine the loss-by-defect and loss-by-dispersion, Mechanical Engineering

Assignment Help:

Determine the loss-by-defect and loss-by-dispersion

Given, Annual production = 1,00,000 units

Specification = 20 ± 4  i.e. m = 20, Δ = 4

Cost of repairing or resetting a product out-of-specification is Rs. 100.

a. Process I,

17_Determine the loss-by-defect and loss-by-dispersion 1.png = 20, σ = 1.33

b. Process II,

17_Determine the loss-by-defect and loss-by-dispersion 1.png = 18, σ = 0.66

c. Process III,

17_Determine the loss-by-defect and loss-by-dispersion 1.png = 17, σ = 0.40

Determine the loss-by-defect and loss-by-dispersion.

Solution

Process I

Given specifications 20±4

∴   USL = 24

    LSL = 16

Given process average (17_Determine the loss-by-defect and loss-by-dispersion 1.png) is mean

 centred at target m = 20 and σ = 1.33.

2215_Determine the loss-by-defect and loss-by-dispersion 2.png

= Min {24 - 20 /3 × 1.33, 20 - 16 /3 × 1.33}           

As both values are equal, we might use either of them as minimum value.

∴          C pk  =  4/ (3 × 1.33) = 1

Loss-by-defect

Loss = proportion out of specification × total number × cost of product

= 0.0027 × 1,00,000 × 100

= 0.27 × 1,00,000

Loss-by-dispersion

Loss = Loss per piece × number of products

1642_Determine the loss-by-defect and loss-by-dispersion 3.png

k =    A/ Δ2 = 100/42  = 6.2

Process II

∴          Loss = 6.2 [(20 - 20)2 + 1.332] × 1,00,000

= 10.97 × 1,00,000

 The process average is observed to be centred at 18 with σ = 0.66

2319_Determine the loss-by-defect and loss-by-dispersion 4.png

= Min { 24 - 18  /3 × 0.66      , 18 - 16/3 × 0.66}     

C pk  =  18 - 16 / 3 × 0.66 = 1.01 ≈ 1

Loss-by-defect

Loss = proportion out of specification × total number × cost of product

Standard normal variable at LSL

 At USL

Z 1 = 16 - 18/  0.66

 = - 3.03

Z2   =  24 - 18/0.66 = 9.09

∴          Proportion out of specification from tables,

= F (- 3.03) + F (9.09)

= 0.00122 + 0

= 0.00122

∴          Loss = 0.00122 × 100000 × 100

= 0.122 × 105 Rs.

Loss-by-dispersion

Loss = Loss per piece × Number of products

1723_Determine the loss-by-defect and loss-by-dispersion 5.png

k =    A/ Δ2

= 100 = 6.25

∴          Loss = 6.25 [(18 - 20)2 + 0.662] × 1,00,000

                     = 27.7 × 105

Process III

x = 17, σ = 0.40

562_Determine the loss-by-defect and loss-by-dispersion 6.png

= Min {24 - 17/3 ´0.4  , 17 - 16 /3´0.4}

= min {5.83, 0.83}

∴          PCI = 0.83

At LSL Z = 16 - 17 /0.4 = - 2.5

At USL Z = 24 - 17 /0.4 = 17.5

∴          Proportion out of specification, from tables

= F (- 2.5) + F (17.5)

= - F (2.5) + F (17.5)

= 0.00621 + 0

= 0.00621

∴ Loss by defect = Proportion out of specification × Total product

× Cost of product

= 0.00621 × 100000 × 100

= 0.621 × 105

Loss-by-dispersion

1539_Determine the loss-by-defect and loss-by-dispersion 7.png

= 6.25 [(17 - 20)2 + 0.42] × 100000

= 57.25 × 105


Related Discussions:- Determine the loss-by-defect and loss-by-dispersion

Which functions used for coating, Q. Which functions used for coating? ...

Q. Which functions used for coating? • Improves arc stability by providing certain chemical which have this ability, by ionizing the path of arc. • Provides a protective gaseou

Contrary to the misconception, Contrary to the misconception that the grow...

Contrary to the misconception that the growth in automobile industry has catered only to the higher income-stratum of society by producing mostly passenger cars, the fastest growt

#title.THERMODYNAMICS., what are the limitations of first law of thermodyna...

what are the limitations of first law of thermodynamics?

Welding, difference between pinhole and porosity

difference between pinhole and porosity

Thermodynamics., First law of thermodynamics applied to flow process

First law of thermodynamics applied to flow process

Brakes drag motorcycle problem, If Brakes Drag Causes of P...

If Brakes Drag Causes of Problem Remedy   Insufficient pedal free play Recommended brake fluid not used

Introduction to tools and equipment , INTRODUCTION: At any point of time, ...

INTRODUCTION: At any point of time, it may be required to disassemble the whole or any part of motorcycle. Whenever a part of motorcycle malfunctions or is damaged then it may be

Laws of solid friction, Laws of solid friction: Sol.: The friction w...

Laws of solid friction: Sol.: The friction which exists between two surfaces that are not lubricated is called as solid friction. The two Surfaces can be at rest or one of t

Load, What is load? Sol. : A load can be defined as the combined eff...

What is load? Sol. : A load can be defined as the combined effect of external forces acting on the body. The load is applied on body whereas stress is induced in material of

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd