Determine the loss-by-defect and loss-by-dispersion, Mechanical Engineering

Assignment Help:

Determine the loss-by-defect and loss-by-dispersion

Given, Annual production = 1,00,000 units

Specification = 20 ± 4  i.e. m = 20, Δ = 4

Cost of repairing or resetting a product out-of-specification is Rs. 100.

a. Process I,

17_Determine the loss-by-defect and loss-by-dispersion 1.png = 20, σ = 1.33

b. Process II,

17_Determine the loss-by-defect and loss-by-dispersion 1.png = 18, σ = 0.66

c. Process III,

17_Determine the loss-by-defect and loss-by-dispersion 1.png = 17, σ = 0.40

Determine the loss-by-defect and loss-by-dispersion.

Solution

Process I

Given specifications 20±4

∴   USL = 24

    LSL = 16

Given process average (17_Determine the loss-by-defect and loss-by-dispersion 1.png) is mean

 centred at target m = 20 and σ = 1.33.

2215_Determine the loss-by-defect and loss-by-dispersion 2.png

= Min {24 - 20 /3 × 1.33, 20 - 16 /3 × 1.33}           

As both values are equal, we might use either of them as minimum value.

∴          C pk  =  4/ (3 × 1.33) = 1

Loss-by-defect

Loss = proportion out of specification × total number × cost of product

= 0.0027 × 1,00,000 × 100

= 0.27 × 1,00,000

Loss-by-dispersion

Loss = Loss per piece × number of products

1642_Determine the loss-by-defect and loss-by-dispersion 3.png

k =    A/ Δ2 = 100/42  = 6.2

Process II

∴          Loss = 6.2 [(20 - 20)2 + 1.332] × 1,00,000

= 10.97 × 1,00,000

 The process average is observed to be centred at 18 with σ = 0.66

2319_Determine the loss-by-defect and loss-by-dispersion 4.png

= Min { 24 - 18  /3 × 0.66      , 18 - 16/3 × 0.66}     

C pk  =  18 - 16 / 3 × 0.66 = 1.01 ≈ 1

Loss-by-defect

Loss = proportion out of specification × total number × cost of product

Standard normal variable at LSL

 At USL

Z 1 = 16 - 18/  0.66

 = - 3.03

Z2   =  24 - 18/0.66 = 9.09

∴          Proportion out of specification from tables,

= F (- 3.03) + F (9.09)

= 0.00122 + 0

= 0.00122

∴          Loss = 0.00122 × 100000 × 100

= 0.122 × 105 Rs.

Loss-by-dispersion

Loss = Loss per piece × Number of products

1723_Determine the loss-by-defect and loss-by-dispersion 5.png

k =    A/ Δ2

= 100 = 6.25

∴          Loss = 6.25 [(18 - 20)2 + 0.662] × 1,00,000

                     = 27.7 × 105

Process III

x = 17, σ = 0.40

562_Determine the loss-by-defect and loss-by-dispersion 6.png

= Min {24 - 17/3 ´0.4  , 17 - 16 /3´0.4}

= min {5.83, 0.83}

∴          PCI = 0.83

At LSL Z = 16 - 17 /0.4 = - 2.5

At USL Z = 24 - 17 /0.4 = 17.5

∴          Proportion out of specification, from tables

= F (- 2.5) + F (17.5)

= - F (2.5) + F (17.5)

= 0.00621 + 0

= 0.00621

∴ Loss by defect = Proportion out of specification × Total product

× Cost of product

= 0.00621 × 100000 × 100

= 0.621 × 105

Loss-by-dispersion

1539_Determine the loss-by-defect and loss-by-dispersion 7.png

= 6.25 [(17 - 20)2 + 0.42] × 100000

= 57.25 × 105


Related Discussions:- Determine the loss-by-defect and loss-by-dispersion

Motion on the inclined plane when the surface is rough, Motion on the incli...

Motion on the inclined plane when the surface is rough:   The figure given above shows a body having weight W, sliding down on rough inclined plane. Assume, θ= Angl

Steam generator load balancing, Q. Steam Generator Load Balancing? The ...

Q. Steam Generator Load Balancing? The pressure controller output is cascaded to individual stations, one for each boiler. These allow selective increase or decrease of the du

Illustrate all the laws of mechanics, (a) Illustrate all the laws of mechan...

(a) Illustrate all the laws of mechanics? (b) What ate the two limits of limitation on Newtonian mechanic?

String vibration fixed ends, String Vibration Fixed Ends In case of the...

String Vibration Fixed Ends In case of the vibrations of a string, both its ends at  x = 0  and  x = L  may be permanently fixed;  y (x = 0) = 0 , and  y (x = L) = 0 at all  t

Coated electrodes and their classifications, COATED ELECTRODES AND THEIR CL...

COATED ELECTRODES AND THEIR CLASSIFICATIONS Welding technology has changed tremendously over the past decades. Its application is found in all sectors of industries, smaller or l

Problem type-aspects of scheduling , Problem Type Aforementioned illust...

Problem Type Aforementioned illustration relates to the class of non-cyclic scheduling problems characterized via the subsequent features. (a) The Flexible Manufacturing Sys

A solid sphere is rotating in free space, A solid sphere is rotating in fre...

A solid sphere is rotating in free space. If the radius of the sphere is increased keeping mass same  which one of the following will not be affected? Solution) In free space, nei

Show the coating application, Q. Show the Coating Application? Immediat...

Q. Show the Coating Application? Immediately following surface preparation, the cleaned pipe shall be uniformly preheated by a non-contaminating method to the application tempe

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd