Determine all possible solutions to ivp, Mathematics

Assignment Help:

Determine all possible solutions to the subsequent IVP.

y' = y?

y(0) = 0

Solution: First, see that this differential equation does NOT satisfy the conditions of the theorem.

f(y) = y1/3

df/dy = 1/(3y2/3)

Hence, the function is continuous on any interval, although the derivative is not continuous at y = 0 and thus will not be continuous at any interval containing y= 0. So as to use the theorem both should be continuous on an interval that contains yo = 0 and it is problem for us as we do have yo = 0.

Here, let's actually work the problem. This differential equation is fairly simple to solve and is separable.

∫ (y-1/3)dy =  ∫dt

3/2 y2/3 = t + c

Applying the initial condition provides c = 0 and therefore the solution is,

3/2 y2/3 = t

y2/3  = (2/3)t

y2 = ((2/3)t)3

y(t) = + ((2/3)t)3/2

Therefore we've got two possible solutions now, both of which satisfy the differential equation and the initial condition. Here is also a third solution to the Initial Value Problem. y(t) = 0 is satisfies the initial condition and is also a solution to the differential equation.

In this last illustration we had an extremely simple Initial Value Problem and it only violated one of the conditions of the theorem, even it had three diverse solutions. All the illustrations we've worked in the earlier sections satisfied the conditions of this theorem and had a particular unique solution to the Initial Value Problem. This illustration is a useful reminder of the information that, in the field of differential equations, things don't all the time behave nicely. It's simple to forget this as most of the problems which are worked in a differential equations class are nice and behave in a nice, predictable way.


Related Discussions:- Determine all possible solutions to ivp

Domain of a vector function - three dimensional space, Domain of a Vector F...

Domain of a Vector Function There is a Vector function of a single variable in R 2 and R 3 have the form, r → (t) = {f (t), g(t)} r → (t) = {f (t) , g(t), h(t)} co

The alternative hypothesis, The alternative hypothesis When formulatin...

The alternative hypothesis When formulating a null hypothesis we also consider the fact that the belief may be found to be untrue thus we will refuse it.  Therefore we formula

Complement of a set, Need solution For the universal set T = {1, 2, 3, 4...

Need solution For the universal set T = {1, 2, 3, 4, 5} and its subset A ={2, 3} and B ={5, } Find i) A 1 ii) (A 1 ) 1 iii) (B 1 ) 1

How many permutations can you make of the word statistics, Q. How many perm...

Q. How many permutations can you make of the word STATISTICS? Solution:  There are 10 letters in the word STATISTICS, i.e. n=10. Three of them are S's, so n 1 =3, three are T'

Which expression below is equal to 5, Which expression below is equal to 5?...

Which expression below is equal to 5? The correct order of operations must be used here. PEMDAS tells you in which you should do the operations in the subsequent order: Pare

Objectives of why learn mathematics, Objectives After studying this uni...

Objectives After studying this unit, you should be able to explain how mathematics is useful in our daily lives; explain the way mathematical concepts grow; iden

Example of implicit differentiation, Example of Implicit differentiation ...

Example of Implicit differentiation So, now it's time to do our first problem where implicit differentiation is required, unlike the first example where we could actually avoid

Integration, what is integration and how is it important

what is integration and how is it important

Find lim sup, 1.find lim sup Ek and liminf Ek of Ek=[(-(1/k),1] for k odd a...

1.find lim sup Ek and liminf Ek of Ek=[(-(1/k),1] for k odd and liminf Ek=[(-1,(1/k)] for k even.  2.Show that the set E = {x in R^2 : x1, x2 in Q} is dense in R^2.  3.let r>0 an

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd