Determine all possible solutions to ivp, Mathematics

Assignment Help:

Determine all possible solutions to the subsequent IVP.

y' = y?

y(0) = 0

Solution: First, see that this differential equation does NOT satisfy the conditions of the theorem.

f(y) = y1/3

df/dy = 1/(3y2/3)

Hence, the function is continuous on any interval, although the derivative is not continuous at y = 0 and thus will not be continuous at any interval containing y= 0. So as to use the theorem both should be continuous on an interval that contains yo = 0 and it is problem for us as we do have yo = 0.

Here, let's actually work the problem. This differential equation is fairly simple to solve and is separable.

∫ (y-1/3)dy =  ∫dt

3/2 y2/3 = t + c

Applying the initial condition provides c = 0 and therefore the solution is,

3/2 y2/3 = t

y2/3  = (2/3)t

y2 = ((2/3)t)3

y(t) = + ((2/3)t)3/2

Therefore we've got two possible solutions now, both of which satisfy the differential equation and the initial condition. Here is also a third solution to the Initial Value Problem. y(t) = 0 is satisfies the initial condition and is also a solution to the differential equation.

In this last illustration we had an extremely simple Initial Value Problem and it only violated one of the conditions of the theorem, even it had three diverse solutions. All the illustrations we've worked in the earlier sections satisfied the conditions of this theorem and had a particular unique solution to the Initial Value Problem. This illustration is a useful reminder of the information that, in the field of differential equations, things don't all the time behave nicely. It's simple to forget this as most of the problems which are worked in a differential equations class are nice and behave in a nice, predictable way.


Related Discussions:- Determine all possible solutions to ivp

Distinct eigenvalues, It's now time to do solving systems of differential e...

It's now time to do solving systems of differential equations. We've noticed that solutions to the system, x?' = A x? It will be the form of, x? = ?h e l t Here l and

Explain the vertex formula, Explain the Vertex Formula ? The vertex for...

Explain the Vertex Formula ? The vertex formula is a convenient way of finding the vertex of the graph for any quadratic function. The graph of the quadratic equation f(x) = ax

Solving decimal equations, The distance around a square photograph is 12.8 ...

The distance around a square photograph is 12.8 centimeters. What is the langth of each side of the fotograph?

Vertical tangent for parametric equations, Vertical Tangent for Parametric ...

Vertical Tangent for Parametric Equations Vertical tangents will take place where the derivative is not defined and thus we'll get vertical tangents at values of t for that we

How to convert percentages to decimals, Q. How to Convert Percentages to De...

Q. How to Convert Percentages to Decimals? Ans. Since percent stands for "hundredths", to write a percentage as a decimal you just need to find how many hundredths it repr

Adding equally sized groups-prerequisites for multiplication, Adding Equall...

Adding Equally Sized Groups:  Once children have had enough practice of making groups of equal size, you can ask them to add some of these equal groups. They can now begin to atte

How many square centimeters are in one square meter, How many square centim...

How many square centimeters are in one square meter? There are 100 cm in a meter. A square meter is 100 cm through 100 cm. The area of this is 10,000 sq cm (100 × 100 = 10,000)

Angles, why is a complimentary angle 90 degres

why is a complimentary angle 90 degres

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd