Design a multiplexer and anomalous signals, Electrical Engineering

Assignment Help:

1. The size of the multiplexer used to implement a truth table can be cut in half (e.g. 4 inputs instead of 8) if one of the variables is used as an input instead of being connected to a select line. For example, a truth table with inputs A, B, C, could be implemented using a 4-input multiplexer with A and B connected to the 2 select lines. A and B would then be able to select 0, 1, C or C (assuming that an inverter is available for C). Figure out how to re-implement Question 3 this way and prove that your solution is correct with a LogicWorks simulation.

2. Another way to implement a truth table is to use a multiplexer. A 2 to1 mux, like the one discussed in class, can select one of two inputs using a single control input. A 4 to 1 mux selects one of four inputs using two control inputs. Consider the following. By using the 2 control inputs as the table input variables and appropriately hard wiring the 4 inputs of the mux to 0 or 1, a 2 input truth table can be implemented.

Using this approach, an n input truth table can be implemented using a 2n to 1 mux.

a) Design a 2 to 1 multiplexer. Verify its operation using LogicWorks.

b) Now using the 2-way routing switch as a building block (use the device editor in LogicWorks to encapsulate the 2-way switch), design a multiplexer large enough to implement the truth table described in Question 2 (Z3 only). Predict the propagation delay, Tpd, of your multiplexer (you will need this to figure out how to space the inputs to your circuit in time). Test your multiplexer with appropriate waveforms and verify that the measured Tpd is consistent with its predicted value.

c) Hard wire the inputs to your multiplexer to implement the truth table described in Question 2(Z3). Verify its operation using LogicWorks.

d) Explain the presence of any anomalous signals (glitches) in your output and give an example of an input transition those results in a glitch at the output. Show this example using LogicWorks.

3. At night, a security guard is suppose to walk from room to room in a building having four rooms. Create a motion detector circuit which will detect the following conditions:

1.- Exactly one motion sensor being equal to 1, meaning, motion has been detected in one room.

2.- No motion sensor is equal to 1, meaning, the guard is either sitting or sleeping and no intruder is present in the building.

3.- Two or more sensors are equal to 1, meaning, there must be an intruder or intruders in the building.

The circuit to be designed has four inputs, S1,S2, S3, S4, one input per sensor, and three outputs, Z1, Z2, Z3, corresponding, respectively, to each one of the mentioned three conditions. Each output is set to 1 when the corresponding condition occurs; otherwise, it is set to 0.

2364_Motor detector.png

The following block diagram represents the circuit to be designed.

a) Produce the truth table of the three output functions.

b) Determine the minimal ΣΠ and ΠΣ for Z3.

c) Implement the corresponding circuit for Z3 using NAND-NAND and NORNOR logic in LogicWorks. Show that your circuits implement the specified truth tables.

d) Using the LogicWorks PROM/PLA wizard, generate the look-up table corresponding to the truth table and generate a test circuit. Verify its operation using LogicWorks.


Related Discussions:- Design a multiplexer and anomalous signals

Solve the nonlinear equation and find r, Q. An interface circuit consisting...

Q. An interface circuit consisting of R 1 and R 2 is designed between the source and the load, as illustrated in Figure such that the load sees a Thevenin resistance of 50  betw

Design a 4-bit universal shift register, Q. Obtain a block diagram of a shi...

Q. Obtain a block diagram of a shift-left/right register using D flip-flops. Q. Design a 4-bit universal shift register. Q. (a) Show a block diagram of an SRFF connected to s

Dsp., fir and iir filter design

fir and iir filter design

Explain working of shaded-pole motors, Q. Explain working of Shaded-pole mo...

Q. Explain working of Shaded-pole motors? Shaded-pole motors: The least expensive of the fractional-horsepower motors, generally rated up to 1 / 20 hp, they have salient stator

Hamming window and zero padding, This question investigates the effect of e...

This question investigates the effect of extending the data set with zero-padding & of the appropriate time in the workflow to apply a window function. To get finer resolution in t

Field effect transistors, basic configuration of field effect transistors i...

basic configuration of field effect transistors in mplifiers

Determine the power angle delta, A synchronous motor has the following para...

A synchronous motor has the following parameters per phase. E=2kv, Eo=5kv, X2=3ohms, and I=700amps. Draw the phasor diagram and determine (a) power angle delta, (b) active po

Active filter design, Design a wide band pass filter with cut-off frequency...

Design a wide band pass filter with cut-off frequency f L = 400 kHz, f H = 600 kHz, and a pass-band gain = 10. The roll-off rate at the cut-off frequency should be at least 4

Uses of fet, Uses of FET IGBTs (Insulated-gate bipolar transistor) se...

Uses of FET IGBTs (Insulated-gate bipolar transistor) see application in switching internal combustion engine ignition coils, in which fast switching and voltage blocking cap

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd