Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Derivatives to Physical Systems:
A stone is dropped into a quiet lake, & waves move within circles outward from the location of the splash at a constant velocity of 0.5 feet per second. Determine the rate at that the area of the circle is increasing when the radius is 4 feet.
Solution:
Using the formula for the area of a circle,
A = πr2
obtain the derivative of both sides of this equation along with respect to time t.
dA/dt = 2πr (dr/dt)
But, dr/dt is the velocity of the circle moving outward which equals 0.5 ft/s and dA /dt is the rate at which the area is increasing, that is the quantity to be determined. Set r equal to 4 feet, substitute the known values into the equation, and solve for dA /dt.
dA/dt = 2πr(dr/dt)
dA/dt = (2)(3.1416)(4 ft)(0.5 ft/s)
dA/dt = 12.6 ft2/s
Therefore, at a radius of 4 feet, the area is raising at a rate of 12.6 square feet per second.
briefly explain how the famous equation for the loss of heat in a cylindrical pipe is derived
We have seen that if y is a function of x, then for each given value of x, we can determine uniquely the value of y as per the functional relationship. For some f
In arithmetic, we deal with numbers. In contrast to this, in algebra, we deal with symbols. These symbols are often represented by lower case alphabets. One of th
Let f : R 3 → R be de?ned by: f(x, y, z) = xy 2 + x 3 z 4 + y 5 z 6 a) Compute ~ ∇f(x, y, z) , and evaluate ~ ∇f(2, 1, 1) . b) Brie?y
The equation ax2 + 2hxy + by2 =0 represents a pair of straight lines passing through the origin and its angle is tan q = ±2root under h2-ab/(a+b) and even the eqn ax2+2hxy+by2+2gx+
how to subtract
approximate the following problem as a mixed integer program. maximize z=e-x1+x1+(x2+1)2 subject to x12+x2 =0
Three-person Problem of Points: Pascal, Fermat and their old friend the Chevalier de Mere each put $10.00 into a pot, and agree to play a game that has rounds. Each player has the
Parametric Curve - Parametric Equations & Polar Coordinates Here now, let us take a look at just how we could probably get two tangents lines at a point. This was surely not
simplify the expression 3/5/64
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd