Derivatives for logarithm, Mathematics

Assignment Help:

Logarithm Functions : Now let's briefly get the derivatives for logarithms.  In this case we will have to start with the following fact regarding functions that are inverses of each other.

Fact 2 : If f(x) & g(x) are inverses of each other then,

                                                               g′ ( x ) = 1/ f ′ ( g ( x ))

Hence, how is this issue useful to us? Well recall that the natural exponential function and the natural logarithm function are inverses of each other and we know derivative of the natural exponential function.

Hence, if we have f ( x ) = ex  and g ( x ) =ln x then,

g′ ( x ) = 1/f ′ ( g ( x )) = 1/ e g ( x )  = 1/ e ln x  =1/ x

The final step just utilizes the fact that the two functions are inverses of each other.

Putting this all together gives,

                              d (ln x )/dx = 1/x                   x>0

Note as well that we have to require that x > 0 as it is required for the logarithm and hence have to also be needed for its derivative.  It can also be illustrated that,

            d(ln  |x| ) /dx= 1/x                                x ≠ 0

By using this all we have to avoid is x=0

In this, unlike the exponential function case, actually we can determine the derivative of the general logarithm function. All that we required is the derivative of the natural logarithm, that we only found, and the change of base formula.  By using the change of base formula we may write a general logarithm as,

                                               loga x = ln x /ln a

Differentiation is then fairly simple.

d(log a x)/dx = d(lnx/lna)/dx

                      = (1/lna )(d(lnx)/dx

                     = 1/xlna

We took benefit of the fact that a was a constant and thus ln a is also a constant and can be factored of the derivative.  Putting all of this together gives,

                                               d (logax)/dx =1/(xlna)

Following is a summary of the derivatives in this section.

d (ex )/dx= ex                                           d (a x ) / dx = a x ln a

d (ln x ) /dx= 1                                          d(log a x)/dx  = 1/xlna


Related Discussions:- Derivatives for logarithm

L''hospital''s rule, L'Hospital's Rule Assume that we have one of the g...

L'Hospital's Rule Assume that we have one of the given cases, where a is any real number, infinity or negative infinity.  In these cases we have, Therefore, L'H

Series solution, Find the series solution of2x2y”+xy’+(x2-3)Y=0 about regul...

Find the series solution of2x2y”+xy’+(x2-3)Y=0 about regular singular point

Definite integral, from 0->1: Int sqrt(1-x^2) Solution) I=∫sqrt(1-x 2 ...

from 0->1: Int sqrt(1-x^2) Solution) I=∫sqrt(1-x 2 )dx = sqrt(1-x 2 )∫dx - ∫{(-2x)/2sqrt(1-x 2 )}∫dx ---->(INTEGRATION BY PARTS)        = x√(1-x 2 ) - ∫-x 2 /√(1-x 2 ) Let

One-to-one correspondence to developing pre-number concepts, One-to-one Cor...

One-to-one Correspondence :  Suppose you are given a certain number of cups and saucers, and are asked to find out whether there are enough saucers for all the cups. How would you

Test of homogeneity , Test of homogeneity This is concerned along with...

Test of homogeneity This is concerned along with the proposition that several populations are homogenous along with respect to some characteristic of interest for example; one

Wavy curve method, In order to compute the inequalities of the form ...

In order to compute the inequalities of the form   where n 1 , n 2 , ....... , n k , m 1 , m 2 , ....... , m p are natural and real numbers and a 1 , a 2 , ... , a k ,

Determine the marginal probability distributions, (1)   The following table...

(1)   The following table gives the joint probability distribution p (X, Y) of random variables X and Y. Determine the following: (a) Do the entries of the table satisfy

How many white marbles does the jar contain? , A jar contains 54 marbles e...

A jar contains 54 marbles each of which is blue , green or white. The probability of selecting a blue marble at random from the jar is 1/3  and the probability of selecting a green

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd