Comparison test for improper integrals - integration, Mathematics

Assignment Help:

Comparison Test for Improper Integrals

Here now that we've seen how to actually calculate improper integrals we should to address one more topic about them.  Frequently we aren't concerned along with the actual value of these integrals.  In place of it we might just only be interested in if the integral is convergent or divergent.  As well, there will be some integrals which we simply won't be capable to integrate and yet we would still such as to know if they converge or diverge.  

 To deal along with this we have got a test for convergence or divergence which we can use to assist us answer the question of convergence for a not proper integral. 

We will provide this test only for a sub-case of the infinite interval integral, though versions of the test exist for the other sub-cases of the infinite interval integrals also integrals with discontinuous integrands.

Comparison Test

If f (x) ≥ g (x) > 0 on the interval [a, ∞] then,

1. If ∫a f(x) converges then so does ∫a g(x) dx.

2. If ∫a g(x) dx diverges then so does ∫a f (x) dx.

Note: If you think in terms of area the Comparison Test makes a lot of sense. Determine if f (x) is larger than g(x) then the area within f (x) must as well be larger than the area under g(x). Thus, if the area within the larger function is finite after that the area under the smaller function has to be finite. Similarly, if the area under the smaller function is infinite after that the area within the larger function must as well be infinite. Be cautious not to misuse this test. If the smaller function converges there is no basis to believe that the larger will as well converge (after all infinity is larger as compared to a finite number...) and determine if the larger function diverges there is no reason to believe that the smaller function will also diverge.


Related Discussions:- Comparison test for improper integrals - integration

Solve the recurrence relation, Solve the recurrence relation T ...

Solve the recurrence relation T (K) = 2T (K-1), T (0) = 1 Ans: The following equation can be written in the subsequent form:  t n - 2t n-1 =  0  Here now su

Determine the determinant of matrix, Example Determinant:   Determine ...

Example Determinant:   Determine the determinant of each of the following matrices. Solution : For the 2 x 2 there isn't much to perform other than to plug this in

Find the total cost of the shop of arithmetic progressions, Raghav buys a s...

Raghav buys a shop for Rs.1,20,000.He pays half the balance of the amount in cash and agrees to pay the balance in 12 annual instalments of Rs.5000 each. If the rate of interest is

Kara brought $23 with her when she went shopping, Kara brought $23 with her...

Kara brought $23 with her when she went shopping. She spent $3.27 for lunch and $14.98 on a shirt. How much money does she have left? The two items that Kara bought must be sub

Prove that ac2 = ap2 + 2(1+2)bp2, ABC is a right-angled isosceles triangle,...

ABC is a right-angled isosceles triangle, right-angled at B. AP, the bisector of ∠BAC, intersects BC at P. Prove that AC 2 = AP 2 + 2(1+√2)BP 2 Ans:    AC = √2AB (Sinc

Find out a series solution for differential equation, Find out a series sol...

Find out a series solution for the following differential equation about x 0 = 0 y′′ + y = 0.   Solution Note that in this case p(x)=1 and therefore every point is an or

Trigonometry 2, three towns are situated in such away that town B is 120 ki...

three towns are situated in such away that town B is 120 kilometers on a bearing of 030 degrees from town A. Town C is 210 kilometers on a bearing of 110 degrees from town A (a)ca

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd