Comparison test for improper integrals - integration, Mathematics

Assignment Help:

Comparison Test for Improper Integrals

Here now that we've seen how to actually calculate improper integrals we should to address one more topic about them.  Frequently we aren't concerned along with the actual value of these integrals.  In place of it we might just only be interested in if the integral is convergent or divergent.  As well, there will be some integrals which we simply won't be capable to integrate and yet we would still such as to know if they converge or diverge.  

 To deal along with this we have got a test for convergence or divergence which we can use to assist us answer the question of convergence for a not proper integral. 

We will provide this test only for a sub-case of the infinite interval integral, though versions of the test exist for the other sub-cases of the infinite interval integrals also integrals with discontinuous integrands.

Comparison Test

If f (x) ≥ g (x) > 0 on the interval [a, ∞] then,

1. If ∫a f(x) converges then so does ∫a g(x) dx.

2. If ∫a g(x) dx diverges then so does ∫a f (x) dx.

Note: If you think in terms of area the Comparison Test makes a lot of sense. Determine if f (x) is larger than g(x) then the area within f (x) must as well be larger than the area under g(x). Thus, if the area within the larger function is finite after that the area under the smaller function has to be finite. Similarly, if the area under the smaller function is infinite after that the area within the larger function must as well be infinite. Be cautious not to misuse this test. If the smaller function converges there is no basis to believe that the larger will as well converge (after all infinity is larger as compared to a finite number...) and determine if the larger function diverges there is no reason to believe that the smaller function will also diverge.


Related Discussions:- Comparison test for improper integrals - integration

Decision-making under conditions of uncertainty, Decision-Making Under Cond...

Decision-Making Under Conditions of Uncertainty With decision making under uncertainty, the decision maker is aware of different possible states of nature, but has insufficient

Absolute value, Consider x € R. Then the magnitude of x is known as it's...

Consider x € R. Then the magnitude of x is known as it's absolute value and in general, shown by |x| and is explained as Since the symbol   always shows the nonnegative

Radius of rhim, how long is the radius of car tyre?

how long is the radius of car tyre?

Geometry, how do we rotate an object 90 counterclockwise?

how do we rotate an object 90 counterclockwise?

Example of inverse matrix, Determine the inverse of the following matrix, i...

Determine the inverse of the following matrix, if it exists. We first form the new matrix through tacking onto the 3 x 3 identity matrix to this matrix.  It is, We

What are mutually exclusive events, Q. What are Mutually Exclusive events? ...

Q. What are Mutually Exclusive events? Mutually Exclusive Events are mutually exclusive if they cannot occur at the same time. For example, if you roll one die, you canno

Find the number of males and females in the village, The population of the ...

The population of the village is 5000.  If in a year, the number of males were to increase by 5% and that of a female by 3% annually, the population would grow to 5202 at the end o

Application of derivatives, the base b of a triangle increases at the rate ...

the base b of a triangle increases at the rate of 2cm per second, and height h decreases at the rate of 1/2 cm per second. Find rate of change of its area when the base and height

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd