Comparison test for improper integrals - integration, Mathematics

Assignment Help:

Comparison Test for Improper Integrals

Here now that we've seen how to actually calculate improper integrals we should to address one more topic about them.  Frequently we aren't concerned along with the actual value of these integrals.  In place of it we might just only be interested in if the integral is convergent or divergent.  As well, there will be some integrals which we simply won't be capable to integrate and yet we would still such as to know if they converge or diverge.  

 To deal along with this we have got a test for convergence or divergence which we can use to assist us answer the question of convergence for a not proper integral. 

We will provide this test only for a sub-case of the infinite interval integral, though versions of the test exist for the other sub-cases of the infinite interval integrals also integrals with discontinuous integrands.

Comparison Test

If f (x) ≥ g (x) > 0 on the interval [a, ∞] then,

1. If ∫a f(x) converges then so does ∫a g(x) dx.

2. If ∫a g(x) dx diverges then so does ∫a f (x) dx.

Note: If you think in terms of area the Comparison Test makes a lot of sense. Determine if f (x) is larger than g(x) then the area within f (x) must as well be larger than the area under g(x). Thus, if the area within the larger function is finite after that the area under the smaller function has to be finite. Similarly, if the area under the smaller function is infinite after that the area within the larger function must as well be infinite. Be cautious not to misuse this test. If the smaller function converges there is no basis to believe that the larger will as well converge (after all infinity is larger as compared to a finite number...) and determine if the larger function diverges there is no reason to believe that the smaller function will also diverge.


Related Discussions:- Comparison test for improper integrals - integration

What could the dimensions of the floor be in terms of x, Harold is tiling a...

Harold is tiling a rectangular kitchen floor with an area that is expressed as x 2 + 6x + 5. What could the dimensions of the floor be in terms of x? Because area of a rectang

Which team should get the ball at the beginning, Why is tossing a coin cons...

Why is tossing a coin considered to be a fair way of deciding which team should get the ball at the beginning of a foot ball match? Ans: equally likely because they are mutual

Tchebyshev distance, Tchebyshev Distance (Maximum Travel Distance per Trip ...

Tchebyshev Distance (Maximum Travel Distance per Trip Using Rectilinear Distance): It can be calculated by using following formula: d(X, Pi) = max{|x - ai|, |y - bi|} (Source

Density Determination, If the mass is 152.2g and the volume is 18cm3, then ...

If the mass is 152.2g and the volume is 18cm3, then what is the density?

Fractions rates and ratios, In 6th grade I am learning about ratios rates a...

In 6th grade I am learning about ratios rates and fractions. I am working on vmathlive.com and need serious.

Function expansion, The functions {sinmx; cosmx}; m = 0,....∞ form a ...

The functions {sinmx; cosmx}; m = 0,....∞ form a complete set over the interval x ∈ [ -Π, Π]. That is, any function f(x) can be expressed as a linear superposition of these

Integers, Explain with the help of number line (-6)+(+5)

Explain with the help of number line (-6)+(+5)

What is transitive relations:, R is called as a transitive relation if (a, ...

R is called as a transitive relation if (a, b) € R, (b, c) € R → (a, c) € R In other terms if a belongs to b, b belongs to c, then a belongs to c.         Transitivity be uns

Subspace of r containing n, Give an example of each of the following given ...

Give an example of each of the following given below . You do not require to give any justi cation. (a) A nonempty, bounded subset of Q with no in mum in Q. (b) A subspace of

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd