Find out the hydrostatic force on the triangular plate, Mathematics

Assignment Help:

Find out the hydrostatic force on the following triangular plate that is submerged in water as displayed.

971_Find out the hydrostatic force on the triangular plate 5.png

Solution

The first thing to do here is set up an axis system.  Thus, let's redo the diagram above with the following axis system added in.

2306_Find out the hydrostatic force on the triangular plate 4.png

Thus, we are going to orient the x-axis that is why positive x is downward, x = 0 corresponds to the water surface and x = 4 refers to the depth of the tip of the triangle. After that we break up the triangle into n horizontal strips every equal width Δx and in each interval [xi-1,xi] select any point xi* .

To make the computations easier we are going to make two assumptions about these strips. First, we will ignore the fact that in fact the ends are going to be slanted and presume the strips are rectangular. If Δx is adequately small this will not affect our computations much.

Second, we will assume that Δx is small enough that the hydrostatic pressure on every strip is necessarily constant. Below is a representative strip.

463_Find out the hydrostatic force on the triangular plate 3.png

The height of this strip is Δx and the width is 2a.  We can use identical triangles to determine a as follows,

¾ = a / 4-xi*

= a 3- ¾ xi*

Here now, as we are assuming the pressure on this strip is constant, the pressure is illustrated by,

Pi = ρgd = 1000 (9.81) xi*

= 9810 xi*

and the hydrostatic force on every strip is,

Fi = Pi A = Pi (2aΔx)

= 9810 xi* (2) (3- (3/4) xi*)Δx

=19620 xi* (3- (3/4) xi*)Δx

The estimated hydrostatic force on the plate is then the sum of the forces on all the strips or,

424_Find out the hydrostatic force on the triangular plate 2.png

Taking the limit will obtain the exact hydrostatic force,

593_Find out the hydrostatic force on the triangular plate 1.png

By using the definition of the definite integral this is nothing much more than,

F = ∫40 19620 (3x - ¾ x2) dx

The hydrostatic force is then

F = ∫40 19620 (3x - ¾ x2) dx

= 19620 (3/2 x2 - ¼ x3) |40

= 156960 N


Related Discussions:- Find out the hydrostatic force on the triangular plate

Stratified sampling, Stratified sampling In stratified sampling case t...

Stratified sampling In stratified sampling case the population is divided into groups in such a way that units in each group are as same as possible in a process called strati

Mensuration, if area of a rectangle is 27 sqmtr and it perimeter is 24 m fi...

if area of a rectangle is 27 sqmtr and it perimeter is 24 m find the length and breath#

Equation, how to slove problems on equations

how to slove problems on equations

If 6 more black balls are put in the box find x, A box contains 12 balls ou...

A box contains 12 balls out of which x are black. If one ball is drawn at random from the box, what is the probability that it will be a black ball? If 6 more black balls are put i

Hello, dans chaque cas recris l expression sous la forme d un rappot reduit...

dans chaque cas recris l expression sous la forme d un rappot reduit 5kg/600g

Market testing, what are the dangers of not market testing a product

what are the dangers of not market testing a product

How we solve polynomial equations using factoring, How we Solve Polynomial ...

How we Solve Polynomial Equations Using Factoring ? A polynomial equation is an equation that has polynomials on both sides. Polynomial equations can often be solved by putti

Explain the counting principle in maths, Explain the Counting Principle in ...

Explain the Counting Principle in maths? The fundamental counting principle is used when you want to calculate the total number of possible outcomes (or combinations) of an exp

Find the value of the derivative, Given y = f(x) = x 2 + 2x +3 a) Use the ...

Given y = f(x) = x 2 + 2x +3 a) Use the definitional formula given below to find the derivative of the function. b) Find the value of the derivative at x = 3.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd