Change in flux linkage, Electrical Engineering

Assignment Help:

1. The coil remaining stationary with respect to the flux, the flux varies in magnitude with time. Since no motion is involved, no energy conversion takes place. Equation gives the transformer emf (or the pulsational emf ) as in the case of a transformer, in which a time-varying flux linking a stationary coil yields a time-varying voltage.

2. The flux remaining constant, the coil moves through it. A conductor or a coil moving through a magnetic field will have an induced voltage, known as the motional emf (or speed emf ), given by

Motional emf e = BlU

which is often called the cutting-of-flux equation, where B is the flux density of a non- time-varying, uniform magnetic field, l is the length of the conductor, U is the velocity of the conductor, and ¯B, ¯l, and ¯U are mutually perpendicular in their directions. If the motion is rotary in nature, it is also known as rotational voltage. The direction for the motional emf can be worked out from the right-hand rule: if the thumb, first, and second fingers of the right hand are extended so that they are mutually perpendicular to each other, and if the thumb represents the direction of ¯U and the first finger the direction of ¯B, the second finger will then represent the direction of the emf along ¯l.

1425_Change in flux linkage.png

The generation of motional emf is further illustrated by a simple example, where a single-turn coil formed by the moving (or sliding) conductor (moving with velocity U), the two conducting rails, and the voltmeter are situated in a magnetic field of flux density B. The conductor moving with a velocity U, in a direction at right angles to both B and l, sweeps the area lU in 1 second. The flux per unit time in this area is BlU, which is also the flux linkage per unit time with the single-turn coil. Thus, the induced emf e is simply given by BlU. The motional emf (or speed emf) is always associated with the conversion of energy between the mechanical and electrical forms.

3. The coil may move through a time-varying flux; that is to say, both changes (1) and (2) may occur together.Usually one of the two phenomena is so predominant in a given device that the other may be neglected for the purposes of analysis.


Related Discussions:- Change in flux linkage

Eeprom, advantages and disadvantages

advantages and disadvantages

What are the various types of amplifiers, Q. What are the various types of ...

Q. What are the various types of amplifiers? Amplifiers can be classified as follows: (a) Based on the transistor configuration 1. Common emitter amplifier 2. Common c

Illustrate output-rate control, Q. Illustrate Output-rate control? A sy...

Q. Illustrate Output-rate control? A system is said to have output-rate damping when the generation of the output quantity in some way ismade to depend upon the rate atwhich th

Electro Chemistry, Construction and working of calomel electrode

Construction and working of calomel electrode

Determine the analog output voltage, Q. Analyze the 2-bit R-2R ladder-netwo...

Q. Analyze the 2-bit R-2R ladder-network D/A converter, and corresponding to binary 01, 10, and 11, obtain the equivalent circuits and determine the analog output voltage as a frac

Determine the voltages, Question: a) For the circuit shown in figure ...

Question: a) For the circuit shown in figure (i) Determine the voltages across R1 and R2 and (ii) Determine the current which flows across R1 and R2. Both D1 and D2 a

Calculate the current flow using norton theorem, Calculate the current flo...

Calculate the current flow in 30Ω resistor for the circuit in figure using Norton Theorem.

Find the power amplification, The constants of an amplifier are given by A ...

The constants of an amplifier are given by A = 1, R i =10,000, and R o = 100. It is driven by a Thévenin source with v Th (t) = V O cos ωt and R Th = 20,000 . The amplifier o

Explain own-exchange routing, Q. Explain Own-exchange routing? Own-exch...

Q. Explain Own-exchange routing? Own-exchange routing or distributed routing enables alternative routes to be chosen at the intermediate nodes. So strategy is capable of respon

Obtain a bode magnitude plot for the transfer function, Q. A bandpass filte...

Q. A bandpass filter circuit is shown in Figure. Develop a PSpice program and use PROBE to obtain a Bode magnitude plot for the transfer function ¯H(f) = ¯Vout/ ¯Vin for frequency

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd