Calculate values of the derivative, Mathematics

Assignment Help:

First, see that the right hand side of equation (2) is a polynomial and thus continuous. This implies that this can only change sign if this firstly goes by zero. Therefore, if the derivative will change signs it will do thus at v = 50 but no guarantees that it will and the only place that it may change sign is v = 50. This implies that for v > 50 the slope of the tangent lines to the velocity will have similar sign. Similarly, for v < 50 the slopes will also have similar sign.  The slopes in these ranges may have and/or probably will have various values, although we do know what their signs should be.

Let's start through looking at v < 50. We saw previous that if v = 30 the slope of the tangent line will be 3.92 or positive. Thus, for all values of v < 50 we will have positive slopes for the tangent lines. Also, by equation (2) we can notice that as v approaches 50, all the time staying less than 50, the slopes of the tangent lines will approach zero and thus flatten out. If we move v away from 50, staying less than 50, the slopes of the tangent lines will turn into steeper. If you want to get a concept of just how steep the tangent lines become you can all the time pick exact values of v and calculate values of the derivative. For illustration, we know as at v = 30 the derivative is 3.92 and thus arrows at this point must have a slope of around 4. By using this information we can here add in several arrows for the region below v = 50 as demonstrated in the graph below.

1384_Calculate values of the derivative.png

Here, let's look at v > 50. The first thing to do is to determine if the slopes are negative or positive. We will do this similar way that we did in the last bit, that is pick a value of v, plug it in (2) and notice if the derivative is negative or positive. See that you must NEVER suppose that the derivative will change signs where the derivative is zero. This is easy adequate to check so you must always do so.


Related Discussions:- Calculate values of the derivative

Inequation, Solve the inequation: |x|

Solve the inequation: |x|

Fractions, you need to cut the proper to cut 2''*4*8 long studs to the prop...

you need to cut the proper to cut 2''*4*8 long studs to the proper length to make a finished wall 8" in height underneath the studs there will be a double plate made up of two piec

Nemeric patterns, Kelli calls her grandmother every month. Every other mont...

Kelli calls her grandmother every month. Every other month,Kelli also calls her cousin in January, how many calls will Kelli have made to her grandmother and her cousin by the end

Design an automaton that accepts only even numbers, Design an automaton tha...

Design an automaton that accepts just only even numbers of 0s and even number of 1's. Ans: The needed automata that accepts even number of 0's and even number of 1's is specifi

#title.automotive cruise control system., What are some of the interestingm...

What are some of the interestingmodern developments in cruise control systems that contrast with comparatively basic old systems

Slope, #question.Find the slope of the line that passes through (7, 3) and ...

#question.Find the slope of the line that passes through (7, 3) and (9, 6). Simplify your answer and write it as a proper fraction, improper fraction, or integer. .

Simple equations, three times the first of the three consecutive odd intege...

three times the first of the three consecutive odd integers is 3 more than twice the third integer. find the third integer.

What is geometry formula to estimate distance, Danielle requires knowing th...

Danielle requires knowing the distance around a basketball court. What geometry formula will she use? The perimeter of a rectangle is two times the length plus two times the wi

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd