Find all the real solutions to cubic equation, Mathematics

Assignment Help:

Find all the real solutions to cubic equation x^3 + 4x^2 - 10 =0. Use the cubic equation x^3 + 4x^2 - 10 =0 and perform the following call to the bisection method [0, 1, 30]

Use the fixed point iteration to find the fixed point(s) for the function g(x) = 1 + x - x^2/3

Find all the real solutions to cubic equation x^3 +4x^2-10=0. Use the cubic equation x^3 + 4x^2 - 10 =0 and perform the following call to the regulaFalsi [0, 1, 30]

Use newton's method to find the three roots of a cubic polynomial f(x) = 4x^3 - 15x^2 + 17x-6. Determine the Newton-raphson iteration formula g[x] = x - (f(x)/f'(x)) that is used. Show details of the computation for the starting value p0 = 3.

Use the secant method to find the three roots of cubic polynomial f[x]=4x^3 - 16x^2 + 17x - 4. Determine the secant iterative formula g[x] = x - (f[x]/f'[x]) that is used. Show details of the computation for the starting value p0=3 and p1=2.8

Use appropiate Lagrange interpolating polynomials of degrees one, two, and three to approximate each of the following:

A) f(8.4) if f(8.1)= 16.94410, f(8.3)=17.56492, f(8.6)=18.50515, and f(8.7)=18.82091

B)f(1/3) if f(-0.75)= -0.07181250, f(-0.5) = -0.02475000, f(-0.025) = 0.33493750, and f(0)=18.82091

Use the newton forward divided-difference formula is used to approximate f(0.3) given the following data

X        0.0     0.2     0.4     0.6

F(x)  15.0   21.0   30.0   51.0

Suppose it is discovered that f(0.4) was understand by 10 and f(0.6) was overstated by 5. By what amount should the approximation to f(0.3) be changed?

Using the error formulas

|f(x)-P1(x)| ≤ 1/8 max (f(x))h2, linear interpolation

|f(x)-P2(x)| ≤ 1/9√3 max (f(x))h3, quadratic interpolation

A)  what is an appropriate size for the interpolation table for the function tan x on the interval [0,1] in order that linear interpolation produce an error no larger than 0.5 x 10^6

B)   Answer A)

A) Using taylor series expansions derive the O(h^2) central difference approximation

F'(x)= (f(x+h)-f(x-h))/2h

B)  using richardson extrapolation and taylor series expansions derive the O (h4) derivative approximation

F'(x)= (-f(x+2h)+8f(x+h)-8f(x-h)+f(x-2h))/12h

Consider the richardson table for derivatives in the form step size table

Step size                       table

H                                  D(0,0)

H/2                               D(1,0)        D(1,1)

H/2^2                           D(2,0)        D(2,1)        D(2,2)

H/2^3                           D(3,0)        D(3,1)        D(2,3)        D(3,3)

.

.

Where the central difference formula

(h)   = (f(x+h)-f(x-h)) /2h

Is used to construct the first column using

D(n,0)= (h/2^n)

And the following formula

D(n,m)= (4^mD(n,m-1)-D(n-1,m-1))/4^m-1 (use for hand calculations)

D(n,m-1)+((D(n,m-1)-D(n-1,m-1)/(4^m-1)) (use for programming)

Is used, for n≥m, to obtain entries in other columns in terms of the entry to their left and the entry above this entry. For example, D(2,1) is obtained in terms of D(2,0) and D(1,0) and D(3,2) is obtained in terms of D(3,1) and D(2,1)

A) construct the table for the derivative of tan x at x=0.5. Choose an initial step size of h=1 and calculate 4 rows by hand using a calculator

B) use maple procedure richardson in file richardson.txt to calculate 6 rows of the richardson extrapolation table.

----------------------------------------------------------------------------------------------

# lip.txt:

#Symbolic calculation of LIP

#(Lagrange interpolating polynomial)

#

#Arguments

#

#xp   list [x0,x1,....,xn] of nodes

#yp   list[y0,y1,.....,yn] of function values at nodes

#x     symbolic variable for the polynomial

#

#lists xp amd yp have n+1 elements and begin at subscript 1

#so the interpolating polynomial is of degree n

----------------------------------------------------------------------------------------------

lip := proc(xp,yp,x)

         local n,s,p,k,j;

         N := nops(xp) -1; #nops(xp) gives number of elements in xp

         S := 0;

         For k from 0 to n do

                   P := yp[k+1];

                   For j from 0 to n do

                            If j<>k then

                                     P := p*(x-xp[j+1])/(xp[k+1]-xp[j+1]);

                            Fi;

                   Od;

                   S := s=p;

         Od;

         Return s;

End proc:


Related Discussions:- Find all the real solutions to cubic equation

Incircle, ab=8cm,bc=6cm,ca=5cm draw an incircle.

ab=8cm,bc=6cm,ca=5cm draw an incircle.

Basic concepts of second order differential equations, In this section we w...

In this section we will be looking exclusively at linear second order differential equations. The most common linear second order differential equation is in the type.  p (t ) y

How to introduce a child to the symbol for zero, A 'woman was trying to tea...

A 'woman was trying to teach her three-year-old child the numbers from 1to 5 from a children's book on numbers. Each number was illustrated by the same number of trees drawn next t

Sketch the direction field for the differential equation, Sketch the direct...

Sketch the direction field for the subsequent differential equation. Draw the set of integral curves for this differential equation. Find out how the solutions behave as t → ∞ and

Find the integral of a function, We want to find the integral of a function...

We want to find the integral of a function at an arbitrary location x from the origin. Thus, where I(x=0) is the value of the integral for all times less than 0. (Essenti

Problem solving, Let E; F be 2 points in the plane, EF has length 1, and le...

Let E; F be 2 points in the plane, EF has length 1, and let N be a continuous curve from E to F. A chord of N is a straight line joining 2 points on N. Prove if 0 and N has no cho

Measures of skewness-measure of central tendency, Measures Of Skewness ...

Measures Of Skewness - These are numerical values such assist in evaluating the degree of deviation of a frequency distribution from the general distribution. - Given are t

Theory of indices, In algebra knowing that 2 3 = 8 is not sufficient...

In algebra knowing that 2 3 = 8 is not sufficient. Equally important to know is what would be the result if quantities like 2 3 . 2 -4 . 2 6 or  3 7 / 3 2

Operation of fraction, what are the formula in the operation of fraction an...

what are the formula in the operation of fraction and how will i apply the operation of fraction on word problems

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd