Theory of indices, Mathematics

Assignment Help:

In algebra knowing that 23 = 8 is not sufficient. Equally important to know is what would be the result if quantities like 23 . 2-4 . 26 or  37 / 32  are simplified. Mind you, finding the value of quantities like these in most of the problems is not an end in itself. The values of these quantities form an input for solving the problem further. Hence, simplifying these quantities help us to solve more advanced problems. Also that, one feels monotonous if he tries to simplify quantities like these by stating at each step what they literally mean. In this part we learn about the laws of indices and understand the logic behind these concepts.

Law 1

am  x an = am+n, when m and n are positive integers.

By the above definition, am  = a x a ...... to m factors and

                                      an  = a x a .... to n factors.

am x an        = (a x a...to m factors) (a x a...to n factors)

                   =  a x a .................... to m + n  factors

                   =  am+n

Now we extend this logic to negative integers and fractions. First let us consider this for negative integer, that is, m will be replaced by - n. By the definition of
am x an = am+n, we get

                            a-n x an = a-n+n = a0

But we know that a0 = 1

 

Hence, a-n = 1/ an or an = 1/ a-n  .

Similarly, what would be the case if m = p/q and n = p/q. By definition, we have

                            ap/q x ap/q = ap/q +  p/q   = a2p/q

This can be written as  2082_theory of indices.png  This is similar to taking the qth root of a2p. Now what would be the result if we proceed to multiply ap/q, q number of times. That is,

ap/q x ap/q x ap/q  x ap/q ...........  to q factors will be equal to aqp/q

We express this as  (ap/q)q= ap, that is taking the qth root of ap.

Apart from these we look at the meaning of a0. In this case the value of m = 0. Therefore, by definition

                            a0 x an = a0+n   = an

This can be also expressed as   a0 = an /an  = 1.

Now we take a numerical and check the validity of this law.

         26 x  27        =     (2 x 2 ....  to 6 factors)

                                   (2 x 2 ...... to 7 factors)

or,     26+7             =     2 x 2 ....... to (6 + 7) factors

                            =     213           = 8192

or else,

         26 x 27         =     (2 x 2 x 2 x 2 x 2 x 2) x

                                    (2 x 2 x 2 x 2 x 2 x 2 x 2)

                            =     (64)(128)

                            =     8192

(Note: The same logic can be extended to more than two factors also.)

Law 2

am/an = am-n, when m and n are positive integers and m > n.

By definition,    am   = a x a ....... to m factors  and

                      an   = a x a ....... to n factors

Therefore, am / an = 2227_law.png

      = a x a ....... to m - n factors
      = am-n

Now we take a numerical and check the validity of this law.

27

/

24    = 1927_law1.png

      = 2 x 2 x 2......to (7 - 4) factors
      = 2 x 2 x 2......to 3 factors
      = 23    = 8

or else,

27 / 24 = 2174_law2.png

          = 2 x 2 x 2 = 21+1+1  = 23
          = 8

Law 3

(am)n = amn, when m and n are positive integers.

By definition, (am)n   = am x am x am .... to n factors.
    (a x a ... to m factors) ....... to n times
  = a x a ..... to mn factors
  = amn

Now let us look whether this is true for positive fractions. We will keep m as it is and replace n by p/q, where p and q are positive integers. Then we will have

                            (am)n = (am)p/q

Now the qth power of (am)p/q  = {(am)p/q}q

 

= 877_law3.png
= (am)p
= amp

If we take the qth root of the above, we obtain

 

(am)p/q = 888_law4.png

For n being any negative quantity: In this case also m remains the same and n be replaced by - r, where r is positive. Then we have

(am)n

= (am)-r = 2414_law5.png

=

444_law6.png = a-mr

Again replacing -r by n, we obtain amn.

Now with the help of a numerical example let us verify this law.

(24)3 = 24 x 24 x 24
  = 24+4+4
  = 212  =  4096
or else,    
(24)3   = (24) (24) (24 )
  = (2 x 2 x 2 x 2) (2 x 2 x 2 x 2)
    (2 x 2 x 2 x 2)
  = (16) (16) (16)
  = 4096

Related Discussions:- Theory of indices

Vectors, |a.x|=1 where x = i-2j+2k then calculate a

|a.x|=1 where x = i-2j+2k then calculate a

find an explicit formula, (a) The generating function G(z) for a sequence ...

(a) The generating function G(z) for a sequence g n is given by G(z) = 1 - 2z/(1 + 3z)3 Give an explicit formula for g n . (b) For the sequence gn in the previous part co

the bug should start to move in order to increase, The temperature at the ...

The temperature at the point (x, y) on a metal plate is given by the function f(x, y) = x 3 + 4xy + y 2 where f is in degrees Fahrenheit and x and y are in inches, with the origin

Explain measurement conversions in details, Explain Measurement Conversions...

Explain Measurement Conversions in details? The following tables show measurements of length, distance, and weight converted from one system to the other. Length and Distanc

Pythagorean theorem, How do you find the perimeter of an irregular shape us...

How do you find the perimeter of an irregular shape using Pythagorean theorem?

The median- graphical method -progression , The median - it is a stati...

The median - it is a statistical value which is usually located at the center of a given set of data that has been organized in the order of size or magnitude as illustrating,

Design an automaton that accepts only even numbers, Design an automaton tha...

Design an automaton that accepts just only even numbers of 0s and even number of 1's. Ans: The needed automata that accepts even number of 0's and even number of 1's is specifi

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd