Calculate the change in volume, Civil Engineering

Assignment Help:

Calculate the change in volume:

If the bar is 1 m long with rectangular cross section of 300 mm deep and 400 mm wide, compute the change in volume of the solid because of a longitudinal compressive force of 720 kN now if the elastic constants E and υ for the material are called as 120 kN/mm2 and 0.2 respectively.

Solution

Area of cross section of the member = 300 × 400 = 120000 mm²

 Longitudinal strain ε = P/AE = - 720 × 1000/120000 × 120 × 103 = - 0.00005

(Note that all the values have to be converted to consistent units; here, it is N for forces and mm for length.)

∴          Total change in length δ = 1000 × (- 0.00005) = - 0.05 mm.

Lateral strain εl = -υε = - 0.2 × (- 0.00005) = 0.00001

Change in depth = 0.00001 × 300 = 0.003 mm

Change  in width = 0.00001 × 400 = 0.004 mm

∴          Change in volume of the solid,

= (1000 - 0.05) (300 + 0.003) (400 + 0.004) - (1000 × 400 × 300)

= 999.95 × 300.003 × 400.004 - (1000 × 400 × 300)

= - 3600.108 mm3

Let us consider an alternate approximate method also.

Change in volume, dV = (V + dV) - V

= (l + Δl) (b + Δb) (d + Δd) - l . b . d

where Δl, Δb, and Δd are changes in length, breadth and depth of the solid.

i.e.       dV = l (1 + ε1) × b (1 + ε2) × d (1 + ε3) - l . b . d

where ε1, ε2 and ε3 are the strains in the three mutually perpendicular directions.

∴          dV = l bd × (1 + ε1) (1 + ε2) (1 + ε3) - l bd

= l bd × (1 + ε1 + ε2 + ε3 + ε1 ε2 + ε2 ε3 + ε3 ε1 + ε1 ε2 ε3) - l bd

= l bd × (ε1 + ε2 + ε3 + ε1 ε2 + ε2 ε3 + ε3 ε1 + ε1 ε2 ε3)

Neglecting the second order products,

dV = V × (ε1 + ε2 + ε3)

Now let us calculate the change in volume of the given solid using Eq.

Change in volume, dV = V × (ε1 + ε2 + ε3)

= 1000 × 300 × 400 (- 0.00005 + 0.00001 + 0.00001)

= - 3600 mm3

By there is a small error, the approximation is quite satisfactory (As an exercise you might calculate the percentage error in the value). If you are extremely particular about accuracy, you use the subsequent formulation:

dV = V × (ε1 + ε2 + ε3 + ε1 ε2 + ε2 ε3 + ε3 ε1 + ε1 ε2 ε3)


Related Discussions:- Calculate the change in volume

State the short-term deflections, State the short-term deflections If  ...

State the short-term deflections If  short-term deflections are considered, the instantaneous deflection due to design loads may be calculated using elastic analysis based on t

Necessity of pile tip cover for rock-socketed H-piles, Q. Necessity of pile...

Q. Necessity of pile tip cover for rock-socketed H-piles? In current practice concrete cover is generally provided at the pile tips of pre-bored H-piles socketed in rock. The o

Analytical methods for pollutants under the clean water act, Analytical Met...

Analytical Methods for Pollutants Regulated Under the Clean Water Act? We suppose that you have knowledge of and access to the relevant analytical methods. These methods cover

Function of a separation membrane amid concrete pavement, Question What...

Question What is main function of a separation membrane amid concrete pavement slab and sub-base ? Answer Division membrane between concrete pavement slab and sub-bas

Survey obstacles in both chainage and ranging, Askobstacles I ranging andsu...

Askobstacles I ranging andsurvey question #Minimum 100 words accepted#

Explain the departure of a line - transportation, Explain the Departure of ...

Explain the Departure of a line - Transportation Departure of a line is the distance that the line extends in an east or west direction. A line that runs towards east has a pos

Door, types of door with sketches

types of door with sketches

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd