Calculate natural frequency and damping coefficient, Mechanical Engineering

Assignment Help:

a. Objectives

  • Observe vibration first hand
  • Calculate natural frequency and damping coefficient
  • observe changes as a result of temperature and material

b. Background

When skiing, any type of bump or variation in the surface of the ground causes vibration in the skis.  These vibrations cause the ski to lose contact with the ground.  Without proper contact, you lose the ability to turn or stop. A similar situation occurs when driving a car on a bumpy road.  In a car, the shocks and struts reduce vibration. Skis rely on their shape and the material from which they are made to reduce these vibrations and provide more control to the skier.

Natural vibration frequency is largely a property of material and geometry.  While certain geometries (shapes) or materials can reduce vibration, they may also adversely affect speed or increase friction.  Manufacturers' effort to balance this 'give and take' can be seen in the variety of types of skis. 

The damping coefficient of the skis also contributes to how quickly vibration is reduced after a bump.  The higher the damping coefficient, the faster vibrations will be equalized, while lower damping coefficients would allow vibration to continue for a longer time.  For example, if you flick a taut rubber band you will see the vibrations continue for minutes, but if you do the same with a show string the vibrations will be gone in seconds.

c. Concepts

Frequency:

  • When a ski vibrates it has a frequency
  • Units: number of cycles per unit time ( ie cycles/sec)

- SI units are Hertz (Hz)

  • Period (P) is the length of one oscillation

372_Calculate Natural Frequency and Damping Coefficient 1.png

Fig 1 Period

Natural Frequency:

  • Natural Frequency is the frequency in which an object settles into if it is not disturbed.
  • Different for different materials and different geometries
  • If an oscillating force is in sync with the natural frequency the oscillations start to build on each other and the oscillations continue to grow uncontrollably
  • Natural frequency (f) is the reciprocal of the period so f=1/P

Damping Coefficient, c

  • Damping Coefficient determines how damped a ski is or how long a ski will vibrate
  • Units of mass per unit time
  • If decaying curve, the equation of the line Y=A*e-c*x with c = damping coefficient. This is shown in Fig. 2 with the black line being the line represented by Y=A*e-c*x
  • System can be

Underdamped (ξ < 1) Lots of oscillations

Rubber band

Critically damped (ξ = 1) No oscillations, but moves quickly

Car shocks

Overdamped (ξ > 1) No oscillations, but moves slowly

Door damper

  • Equation relating spring constant and mass to damping coefficient

c= ξ*2*(k*m)(1/2)

k = spring constant, m = mass

1948_Calculate Natural Frequency and Damping Coefficient 2.png

Figure 2

d. Procedure

As we ran the experiment in class as a demo you will simply download the data from the blackboard site under assignments. There will be four files. One for the SS ski at room temperature and near freezing as well as the composite ski at room temperature and near freezing. 

688_Calculate Natural Frequency and Damping Coefficient 3.png

Figure : Decaying Wave

 

1. Open the downloaded Excel files. The left column represents the time in seconds while the right column is acceleration.

2. Create a graph by highlighting the entirety of the two columns buy highlighting the first values of both column and then hold down control and shift and press down.

a. On the top menu bar select "insert"; "chart"; "XY (Scatter)"; then select the icon on the right that shows smooth curves with no data points. Click finish and you have your chart with time on the x axis and acceleration on the y axis. Your data if when zoomed in should look something like figure 4.

3. Find the time for one period of vibration; one period is shown in Figure 5.

a. By hovering the mouse curser over the graph the x,y values will be displayed. To find the period, record the time values for two consecutive peaks and subtract those values

P = X1- X2 =____________

788_Calculate Natural Frequency and Damping Coefficient 4.png

Figure : One period of vibration

4. The natural frequency can then be found by taking the reciprocal of the period.

f = 1/P = 1/seconds = Hertz

Frequency = 1/time (number of seconds in one period) Record your frequency.

5. The damping coefficient will be found by looking at the maximum points of the graph

a. By hovering over a peak point on the graph the x,y values will be displayed

b. Record about 10 different peak values into excel, start with the highest peak before it starts to decay and end when the peaks start to level off.

c. Input these values into excel and make another 'XY (Scatter)' graph exactly the same way as in step 2.

d. After the graph is created, click on the data in the graph, highlighting the data

e. Right click and select 'Add Trend line'

f. Under 'Type' select exponential

g. Under 'Options' select 'Display Equation on Chart'

h. Click 'OK'

i. This will fit an exponential curve to the data you selected and an equation such as Y= A*eB*x  

j. The 'B' value is the damping coefficient. Record this for later use

6. Repeat for all four files.

7. Using the recorded values answer the questions asked in the homework assignment.


Related Discussions:- Calculate natural frequency and damping coefficient

Corrosion resistance of zirconium, Q. Corrosion resistance of Zirconium? ...

Q. Corrosion resistance of Zirconium? Zirconium offers excellent corrosion resistance to most oxidizing and reducing acids and virtually all alkalis. However, it is not resist

Fifth service and sixth service-mandatory checks , Fifth Service and Sixth ...

Fifth Service and Sixth Service Following extra mandatory checks are required during the fifth service of a 125 cc motorcycle : Inspect engine oil and top up as re

Determine the maximum bending stresses, Determine the maximum bending stres...

Determine the maximum bending stresses: A rectangular beam of breadth 100 mm & depth 200 mm is simply supported over a span of 4 m. The beam is loaded with a uniformly distrib

Define the project scope, Q. Define the project scope? The Design Basis...

Q. Define the project scope? The Design Basis Memorandum defines the project scope. This includes basic design concepts and the basis and philosophies upon which the project s

Theory of constraints, Theory of Constraints: Goldratt's theory of con...

Theory of Constraints: Goldratt's theory of constraint has attracted the attention of several practioners in the industry. His concept of goal, constraint, and throughput, cri

Calculate the suitable diameter for a solid shaft, A shaft is hinghed by tw...

A shaft is hinghed by two bearings placed 1.0 m apart. A 600mm diameter pulley is mounted at a distance of 300 mm to the right of left hand bearing and this operates a pulley direc

Spot welding of different metals, Spot welding of different metals Thou...

Spot welding of different metals Though, mild steel is t he metal most commonly used, any prime metal or alloy can be successfully spot welded provided that machine with suitab

Explain about napthenic acid corrosion, Q. Explain about Napthenic Acid Cor...

Q. Explain about Napthenic Acid Corrosion? Some crude oils contain napthenic acids, which, at elevated temperatures, may contribute to more active corrosion with or without the

Bending stress, What is bending stress? The bending moment at section t...

What is bending stress? The bending moment at section tends to bend or deflect beam and internal stresses resist its bending. The process of bending stops when the cross sectio

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd