## binary search, Data Structure & Algorithms

Assignment Help:
Explain binary search with an example

#### Depth First Search Through Un-weighted Connected Graph , Q. Write down the ...

Q. Write down the algorithm which does depth first search through an un-weighted connected graph. In an un-weighted graph, would breadth first search or depth first search or neith

#### Find error for curious number, #include #include int sumFact(int numb);...

#include #include int sumFact(int numb); int calculateFactorial(int digit); main() { int numb, sumfact; do{ printf ("Enter a number 1 to 9999\n"); scanf("%

#### Explain thread, Thread By changing the NULL lines in a binary tree to ...

Thread By changing the NULL lines in a binary tree to special links known as threads, it is possible to perform traversal, insertion and deletion without using either a stack

#### ALGORITHM AND TRACING, WRITE AN ALGORITHM TO CONVERT PARENTHIZED INFIX TO P...

WRITE AN ALGORITHM TO CONVERT PARENTHIZED INFIX TO POSTFIX FORM ALSO TRACE ALG ON ((A+B)*C-(D-E)\$F+G)

#### Methods, what is folding method?

what is folding method?

#### If-then-else statements, In this example, suppose the statements are simple...

In this example, suppose the statements are simple unless illustrious otherwise. if-then-else statements if (cond) { sequence of statements 1 } else { sequence of st

#### Minimum cost spanning trees, A spanning tree of any graph is only a subgrap...

A spanning tree of any graph is only a subgraph that keeps all the vertices and is a tree (having no cycle). A graph might have many spanning trees. Figure: A Graph

#### SORTING ALGORIthm, the deference between insertion,selection and bubble sor...

the deference between insertion,selection and bubble sort

#### Trees, What is AVL Tree? Describe the method of Deletion of a node from and...

What is AVL Tree? Describe the method of Deletion of a node from and AVL Tree ?

#### Construction of a binary tree , Q. Construct a binary tree whose nodes in i...

Q. Construct a binary tree whose nodes in inorder and preorder are written as follows: Inorder : 10, 15, 17, 18, 20, 25, 30, 35, 38, 40, 50 Preorder: 20, 15, 10