Arc length and surface area revisited, Mathematics

Assignment Help:

Arc Length and Surface Area Revisited

We won't be working any instances in this part.  This section is here exclusively for the aim of summarizing up all the arc length and surface area problems. The arc length and surface area has arisen several times and each time we got a new formula out of the mix.  Students frequently get a little overwhelmed along with all the formulas. Though, there really aren't as several formulas as it might seem at 1st glance.  There is precisely one arc length formula and exactly two surface area formulas.  These are as follow:

L = ∫ ds

S = ∫ 2Π y ds                           rotation about x - axis

S = ∫ 2Π x ds                           rotation about y - axis

The problems come up as we have quite a few ds's that we can utilize. Once again students frequently have trouble deciding which one to use.  The instances/problems generally suggest the correct one to use.  Now here is a total listing of all the ds's that we've seen and when they are employed.

If y =f (x), a < x < b then

ds = √ (1 + (dy/dx)2) dx

If x =h(y), c < y < d then

ds = √ (1 + (dx/dy)2) dy

If x =f (t), y = g (t), α < t < β then

ds = √ ((dx/dt)2 + (dy/dt)2) dt

If r = f (θ), α < θ < β then

ds = √ (r2 + (dr/dθ)2) dθ

Depending upon the type of the function we can speedily tell which ds to use. 

There is just only one other thing to worry about in terms of the surface area formula.The ds will make sure a new differential to the integral.  Before integrating ensure all the variables are in terms of this new differential.For instance if we have parametric equations we'll make use of the third ds and then we'll need to ensure and substitute for the x or y depending upon which axis we rotate regarding to obtain everything in terms of t.

Similarly, if we have a function in the form like x = h(y) then we'll make use of the second ds and if the rotation is regarding the y-axis we'll require to substitute for the x in the integral.Conversely if we rotate about the x-axis we won't require to do a substitution for the y.


Related Discussions:- Arc length and surface area revisited

Circumcircle problem, find the radius of circumcircle of an equilateral tri...

find the radius of circumcircle of an equilateral triangle of 6root3 one side.

Use the power function to find derivative, Given, y = f(x) = 2 x 3 - 3x 2 ...

Given, y = f(x) = 2 x 3 - 3x 2 + 4x +5 a)  Use the Power function to find derivative of the function. b)  Find the value of the derivative at x = 4.

how many of the original vectors, We have claimed that a randomly generate...

We have claimed that a randomly generated point lies on the equator of the sphere  independent of where we pick the North Pole.  To test this claim randomly generate ten  vectors i

Coefficient of determination, It refers to the ratio of the explained varia...

It refers to the ratio of the explained variation to the total variation and is utilized to measure the strength of the linear relationship. The stronger the linear relationship th

Example of developing estimation skills, There are a variety of strategies ...

There are a variety of strategies that people use for developing this ability. For instance, while adding 1821,695 and 250, a person could estimate it mentally i) by rounding of

What is addition rule of probability, Q. What is Addition Rule of probabili...

Q. What is Addition Rule of probability? Ans. Suppose there are 17 girls and 15 boys in your stats class. There are 17 + 15 = 32 ways for your teacher to pick one student

Demerits and merits -the arithmetic mean or a.m, Demerits and merits of the...

Demerits and merits of the measures of central tendency The arithmetic mean or a.m Merits i.  It employs all the observations given ii. This is a very useful

Linear programming , use the simplex method to solve the following lp probl...

use the simplex method to solve the following lp problem. max z = 107x1 + x2 + 2x3 subject to 14x1 + x2 - 6x3 + 3x4 = 7 16x1 + x2 - 6x3 3x1 - x2 - x3 x1,x2,x3,x4 > = 0

Examples on probability, 1. A machine comprises of three transformers A, B ...

1. A machine comprises of three transformers A, B and C. Such machine may operate if at least 2 transformers are working. The probability of each transformer working is given as di

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd