Arc length and surface area revisited, Mathematics

Assignment Help:

Arc Length and Surface Area Revisited

We won't be working any instances in this part.  This section is here exclusively for the aim of summarizing up all the arc length and surface area problems. The arc length and surface area has arisen several times and each time we got a new formula out of the mix.  Students frequently get a little overwhelmed along with all the formulas. Though, there really aren't as several formulas as it might seem at 1st glance.  There is precisely one arc length formula and exactly two surface area formulas.  These are as follow:

L = ∫ ds

S = ∫ 2Π y ds                           rotation about x - axis

S = ∫ 2Π x ds                           rotation about y - axis

The problems come up as we have quite a few ds's that we can utilize. Once again students frequently have trouble deciding which one to use.  The instances/problems generally suggest the correct one to use.  Now here is a total listing of all the ds's that we've seen and when they are employed.

If y =f (x), a < x < b then

ds = √ (1 + (dy/dx)2) dx

If x =h(y), c < y < d then

ds = √ (1 + (dx/dy)2) dy

If x =f (t), y = g (t), α < t < β then

ds = √ ((dx/dt)2 + (dy/dt)2) dt

If r = f (θ), α < θ < β then

ds = √ (r2 + (dr/dθ)2) dθ

Depending upon the type of the function we can speedily tell which ds to use. 

There is just only one other thing to worry about in terms of the surface area formula.The ds will make sure a new differential to the integral.  Before integrating ensure all the variables are in terms of this new differential.For instance if we have parametric equations we'll make use of the third ds and then we'll need to ensure and substitute for the x or y depending upon which axis we rotate regarding to obtain everything in terms of t.

Similarly, if we have a function in the form like x = h(y) then we'll make use of the second ds and if the rotation is regarding the y-axis we'll require to substitute for the x in the integral.Conversely if we rotate about the x-axis we won't require to do a substitution for the y.


Related Discussions:- Arc length and surface area revisited

Climate and vegetation of southeast asia, 1.) How does the monsoon influenc...

1.) How does the monsoon influence the climate and vegetation of Southeast Asia? 2.) What is the main crop in Southeast Asia and the main systems by which it is produce? How and

Forced - damped vibrations, It is the full blown case where we consider eve...

It is the full blown case where we consider every final possible force which can act on the system. The differential equation in this case, Mu'' + γu'  + ku = F( t) The displ

Evaluate following. 0ln (1+)excos(1-ex)dx substitution, Evaluate following....

Evaluate following. ∫ 0 ln (1 + π )   e x cos(1-e x )dx Solution The limits are little unusual in this case, however that will happen sometimes therefore don't get

.fractions, what is the difference between North America''s part of the tot...

what is the difference between North America''s part of the total population and Africa''s part

Trigonmetry, On your geometry test you have two triangles: ?ABC and ?MNO. Y...

On your geometry test you have two triangles: ?ABC and ?MNO. You are told that ?A ? ? M and that ?B ? ? N. Which statement is also true?

Fractions, question paper on fractions

question paper on fractions

BOUNDARY VALUE PROBLEM, Ut=Uxx+A exp(-bx) u(x,0)=A/b^2(1-exp(-bx)) u(0,t)=0...

Ut=Uxx+A exp(-bx) u(x,0)=A/b^2(1-exp(-bx)) u(0,t)=0 u(1,t)=-A/b^2 exp(-b)

Prove that op=2ap, Two tangents PA and PB are drawn to the circle with cent...

Two tangents PA and PB are drawn to the circle with center O, such that ∠APB=120 o . Prove that OP=2AP. Ans:    Given : - ∠APB = 120o Construction : -Join OP To prove : -

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd