Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Horse trading game with single seller:-
Find the core of the variant of the horse trading game in which there is a single owner, whose valuation is less than the highest valuation of the non owners.
If you have studied economics you know that this outcome is the same as the "competitive equilibrium". The theories differ, however. The theory of competitive equilibrium assumes that all trades take place at the same price. It defines an equilibrium price to be one at which "demand" (the total number of nonowners whose valuations exceed the price) is equal to "supply" (the total number of owners whose valuations are less than the price).
This equilibrium may be justified by the argument that if demand exceeds supply then the price will tend to rise, and if supply exceeds demand it will tend to fall. Thus in this theory, "market pressures" generate an equilibrium price; no agent in the market chooses a price.
By contrast, the coalitional game we have studied models the players' actions explicitly; each group may exchange its horses and money in any way it wishes. The core is the set of actions of all players that survives the pressures imposed by the trading opportunities of each possible group of players. A uniform price is not assumed, but is shown to be a necessary property of any action in the core.
Player 1 has the following set of strategies {A1;A2;A3;A4}; player 2’s set of strategies are {B1;B2;B3;B4}. Use the best-response approach to find all Nash equilibria.
A supplier and a buyer, who are both risk neutral, play the following game, The buyer’s payoff is q^'-s^', and the supplier’s payoff is s^'-C(q^'), where C() is a strictly convex cost function with C(0)=C’(0)=0. These payoffs are commonly known.
Pertaining to the matrix need simple and short answers, Find (a) the strategies of the firm (b) where will the firm end up in the matrix equilibrium (c) whether the firm face the prisoner’s dilemma.
Consider the two-period repeated game in which this stage game is played twice and the repeated-game payos are simply the sum of the payos in each of the two periods.
Two players, Ben and Diana, can choose strategy X or Y. If both Ben and Diana choose strategy X, every earns a payoff of $1000.
The market for olive oil in new York City is controlled by 2-families, Sopranos and Contraltos. Both families will ruthlessly eliminate any other family that attempts to enter New York City olive oil market.
Following is a payoff matrix for Intel and AMD. In each cell, 1st number refers to AMD's profit, while second is Intel's.
Determine the solution to the given advertising decision game between Coke and Pepsi, assuming the companies act independently.
Little Kona is a small coffee corporation that is planning entering a market dominated through Big Brew. Each corporation's profit depends on whether Little Kona enters and whether Big Brew sets a high price or a low price.
Suppose you and your classmate are assigned a project on which you will earn one combined grade. You each wish to receive a good grade, but you also want to avoid hard work.
Consider trade relations in the United State and Mexico. Suppose that leaders of two countries believe the payoffs to alternative trade policies are as follows:
Use the given payoff matrix for a simultaneous move one shot game to answer the accompanying questions.
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd