Systems of equations revisited, Mathematics

Systems of Equations Revisited

We require doing a quick revisit of systems of equations. Let's establish with a general system of equations.

a11 x1 + a12 x2 +................+a1n xn = b1

a21 x1 + a22 x2 +.............. +a2n xn  = b2


an1 x1 + an2 x2 +............... +ann xn  = bn                              ...................(1)

Here, covert each side in a vector to find,

1410_Systems of Equations Revisited.png

The left side of such equation can be thought of like a matrix multiplication.

845_Systems of Equations Revisited1.png

Simplifying up the notation a little provides,

A x? = b?   ................................(2)

Now there, x? is a vector that elements are the unknowns in the original system of equations.

We take (2) the matrix form of the system of equations (1) and resolving (2) is equal to solving

(1). the solving process is identical. The augmented matrix for (2) is,


Once we contain the augmented matrix we proceed as we did along with a system which hasn't been wrote in matrix form.

We also have the subsequent fact regarding to solutions to (2).


Provided the system of equation (2) we contain one of the subsequent three possibilities for solutions.

1.   There will be no more solutions.

2.   There will be particularly one solution.

3.   There will be infinitely various solutions.

Actually we can go a little farther here. Because we are assuming that we've got similar number of equations like unknowns the matrix A in (2) is a square matrix and therefore we can calculate its determinant. This provides the following fact.


Provided the system of equations in (2) we have the subsequent.

1.   If A is nonsingular then there will be particularly one solution to the system.

2.   If A is singular then there will either be no solution or infinitely various solutions to the system.

The matrix form of a homogeneous system is as,

A x?= 0?

 Here 0? is the vector of all zeroes. Under the homogeneous system we are guaranteed to have a solutions, x? = 0?. The fact above for homogeneous systems is so, Fact

Given the homogeneous system (3) we contain the subsequent.

1.   If A is nonsingular then the only solution will be x? = 0?

2.   If A is singular then there will be infinitely many nonzero solutions to the system.

Posted Date: 4/11/2013 12:59:18 AM | Location : United States

Related Discussions:- Systems of equations revisited, Assignment Help, Ask Question on Systems of equations revisited, Get Answer, Expert's Help, Systems of equations revisited Discussions

Write discussion on Systems of equations revisited
Your posts are moderated
Related Questions
Safe deposit boxes are rented at the bank. The dimensions of a box are (22x5x5) in. Determine the volume of the box? a. 220 in 3 b. 550 in 3 c. 490 in 3 d. 360 in 3

Q. Basic Set Union Operation? Ans. Suppose instead that your school needs to know which students are taking either art or business or both. Then the students who are ta

Method of disks or the method of rings One of the simple methods for getting the cross-sectional area is to cut the object perpendicular to the axis of rotation.  Carrying out

It is not the first time that we've looked this topic. We also considered linear independence and linear dependence back while we were looking at second order differential equation

Last year, a math textbook cost $54. This year the cost is 107 percent of what it was last year. What is this year's cost? a. $59.78 b. $57.78 c. $61.00 d. $50.22 To ?nd out

If Var(x) = 4, find Var (3x+8), where X is a random variable. Var (ax+b) = a 2 Var x Var (3x+8) = 3 2 Var x = 36

How do you find the distributive property any faster?

Solve the subsequent IVP Y'' - 9 y = 0, y(0) = 2, y'(0) = -1 Solution First, the two functions  y (t ) = e 3t  and  y(t ) = e -3t That is "nice enough" for us to

What is Congruent Angles in Parallel Lines ? Postulate 4.1 (The Parallel Postulate) Through a given point not on a line there is exactly one line parallel to the line. T