Systems of equations revisited, Mathematics

Assignment Help:

Systems of Equations Revisited

We require doing a quick revisit of systems of equations. Let's establish with a general system of equations.

a11 x1 + a12 x2 +................+a1n xn = b1

a21 x1 + a22 x2 +.............. +a2n xn  = b2

...................

an1 x1 + an2 x2 +............... +ann xn  = bn                              ...................(1)

Here, covert each side in a vector to find,

1410_Systems of Equations Revisited.png

The left side of such equation can be thought of like a matrix multiplication.

845_Systems of Equations Revisited1.png

Simplifying up the notation a little provides,

A x? = b?   ................................(2)

Now there, x? is a vector that elements are the unknowns in the original system of equations.

We take (2) the matrix form of the system of equations (1) and resolving (2) is equal to solving

(1). the solving process is identical. The augmented matrix for (2) is,

A(b?)

Once we contain the augmented matrix we proceed as we did along with a system which hasn't been wrote in matrix form.

We also have the subsequent fact regarding to solutions to (2).

Fact

Provided the system of equation (2) we contain one of the subsequent three possibilities for solutions.

1.   There will be no more solutions.

2.   There will be particularly one solution.

3.   There will be infinitely various solutions.

Actually we can go a little farther here. Because we are assuming that we've got similar number of equations like unknowns the matrix A in (2) is a square matrix and therefore we can calculate its determinant. This provides the following fact.

Fact

Provided the system of equations in (2) we have the subsequent.

1.   If A is nonsingular then there will be particularly one solution to the system.

2.   If A is singular then there will either be no solution or infinitely various solutions to the system.

The matrix form of a homogeneous system is as,

A x?= 0?

 Here 0? is the vector of all zeroes. Under the homogeneous system we are guaranteed to have a solutions, x? = 0?. The fact above for homogeneous systems is so, Fact

Given the homogeneous system (3) we contain the subsequent.

1.   If A is nonsingular then the only solution will be x? = 0?

2.   If A is singular then there will be infinitely many nonzero solutions to the system.


Related Discussions:- Systems of equations revisited

Limit, limit x APProaches infinity (1+1/x)x=e

limit x APProaches infinity (1+1/x)x=e

Find the slope of this line, The following graph shows the growth of the me...

The following graph shows the growth of the median home value in a particular region of the United States starting in 1996.  The graphs starts in 1996 and shows the trend through t

Geometry, the segments shown could form a triangle

the segments shown could form a triangle

Linear programming , Use the simplex method to solve the following LP Probl...

Use the simplex method to solve the following LP Problem. Max Z = 107x1+x2+2x3 Subject to 14x1+x2-6x3+3x4=7 16x1+x2-6x3 3x1-x2-x3 x1,x2,x3,x4 >=0

Find the median, Marks obtained by 70 students are given below: ...

Marks obtained by 70 students are given below: M arks 20 70 50 60 75 90 40 No.

What is angles, What is Angles? An angle is made up of two rays with a ...

What is Angles? An angle is made up of two rays with a common endpoint, which is called the vertex. The sides of the angle are rays. An angle is denoted by "θ". When two li

Circumference of a circle, How far will a bowling ball goes in one rotation...

How far will a bowling ball goes in one rotation if the ball has a diameter of 10 inches? (π = 3.14) 1. 78.5 in 2. 31.4 in 3. 62.8 in 4. 15.7 in 2. The circumfere

Trigonometry, if theta is a positive acute angle and 2sin theta +15cos squ...

if theta is a positive acute angle and 2sin theta +15cos square theta=7 then find the value of cot theta

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd