Systems of equations revisited, Mathematics

Assignment Help:

Systems of Equations Revisited

We require doing a quick revisit of systems of equations. Let's establish with a general system of equations.

a11 x1 + a12 x2 +................+a1n xn = b1

a21 x1 + a22 x2 +.............. +a2n xn  = b2

...................

an1 x1 + an2 x2 +............... +ann xn  = bn                              ...................(1)

Here, covert each side in a vector to find,

1410_Systems of Equations Revisited.png

The left side of such equation can be thought of like a matrix multiplication.

845_Systems of Equations Revisited1.png

Simplifying up the notation a little provides,

A x? = b?   ................................(2)

Now there, x? is a vector that elements are the unknowns in the original system of equations.

We take (2) the matrix form of the system of equations (1) and resolving (2) is equal to solving

(1). the solving process is identical. The augmented matrix for (2) is,

A(b?)

Once we contain the augmented matrix we proceed as we did along with a system which hasn't been wrote in matrix form.

We also have the subsequent fact regarding to solutions to (2).

Fact

Provided the system of equation (2) we contain one of the subsequent three possibilities for solutions.

1.   There will be no more solutions.

2.   There will be particularly one solution.

3.   There will be infinitely various solutions.

Actually we can go a little farther here. Because we are assuming that we've got similar number of equations like unknowns the matrix A in (2) is a square matrix and therefore we can calculate its determinant. This provides the following fact.

Fact

Provided the system of equations in (2) we have the subsequent.

1.   If A is nonsingular then there will be particularly one solution to the system.

2.   If A is singular then there will either be no solution or infinitely various solutions to the system.

The matrix form of a homogeneous system is as,

A x?= 0?

 Here 0? is the vector of all zeroes. Under the homogeneous system we are guaranteed to have a solutions, x? = 0?. The fact above for homogeneous systems is so, Fact

Given the homogeneous system (3) we contain the subsequent.

1.   If A is nonsingular then the only solution will be x? = 0?

2.   If A is singular then there will be infinitely many nonzero solutions to the system.


Related Discussions:- Systems of equations revisited

Rules of integration, Rules of Integration 1. If ...

Rules of Integration 1. If 'k' is a constant then ∫Kdx =  kx + c 2. In

Tangents, case 2:when center is not known proof

case 2:when center is not known proof

Modulo Arithmetic, What is Modulo Arithmetic and what is an easy way to rem...

What is Modulo Arithmetic and what is an easy way to remember it?

Quadratic equations by completing the square method, Can we solve the Quadr...

Can we solve the Quadratic Equations by completing the square method? if yes explain it.

Price cutter sold 85 beach towels what were the total sales, Price Cutter s...

Price Cutter sold 85 beach towels for $6.95 each. What were the total sales? You must multiply the number of towels sold through the price of each towel; 85 × $6.95 = $590.75.

Evaluate the inverse function , Question: a. What is the inverse of f (...

Question: a. What is the inverse of f (x)? b. Graph the inverse function from part (a). c. Rewrite the inverse function from part (a) in exponential form. d. Evaluate

Solve the subsequent lp problem, Solve the subsequent LP problem graphicall...

Solve the subsequent LP problem graphically through enumerating the corner points. MAX:              3X1 + 4X2 Subject to:    X1   12                     X2    10

Find the area of parallelogram, Find the area of PARALLELOGRAM ? A para...

Find the area of PARALLELOGRAM ? A parallelogram is a four-sided shape, of which the opposite sides are parallel. (Because they are parallel, opposite sides also have the same

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd