Systems of equations revisited, Mathematics

Assignment Help:

Systems of Equations Revisited

We require doing a quick revisit of systems of equations. Let's establish with a general system of equations.

a11 x1 + a12 x2 +................+a1n xn = b1

a21 x1 + a22 x2 +.............. +a2n xn  = b2

...................

an1 x1 + an2 x2 +............... +ann xn  = bn                              ...................(1)

Here, covert each side in a vector to find,

1410_Systems of Equations Revisited.png

The left side of such equation can be thought of like a matrix multiplication.

845_Systems of Equations Revisited1.png

Simplifying up the notation a little provides,

A x? = b?   ................................(2)

Now there, x? is a vector that elements are the unknowns in the original system of equations.

We take (2) the matrix form of the system of equations (1) and resolving (2) is equal to solving

(1). the solving process is identical. The augmented matrix for (2) is,

A(b?)

Once we contain the augmented matrix we proceed as we did along with a system which hasn't been wrote in matrix form.

We also have the subsequent fact regarding to solutions to (2).

Fact

Provided the system of equation (2) we contain one of the subsequent three possibilities for solutions.

1.   There will be no more solutions.

2.   There will be particularly one solution.

3.   There will be infinitely various solutions.

Actually we can go a little farther here. Because we are assuming that we've got similar number of equations like unknowns the matrix A in (2) is a square matrix and therefore we can calculate its determinant. This provides the following fact.

Fact

Provided the system of equations in (2) we have the subsequent.

1.   If A is nonsingular then there will be particularly one solution to the system.

2.   If A is singular then there will either be no solution or infinitely various solutions to the system.

The matrix form of a homogeneous system is as,

A x?= 0?

 Here 0? is the vector of all zeroes. Under the homogeneous system we are guaranteed to have a solutions, x? = 0?. The fact above for homogeneous systems is so, Fact

Given the homogeneous system (3) we contain the subsequent.

1.   If A is nonsingular then the only solution will be x? = 0?

2.   If A is singular then there will be infinitely many nonzero solutions to the system.


Related Discussions:- Systems of equations revisited

Matrix equation , Hi may i know how to substract the (ID)colum matrix from ...

Hi may i know how to substract the (ID)colum matrix from (K)square matrix as per equation below. E = (K - ID)^-1 S K is m*m matrix I is idntity matrix d is column vector s is col

The sum of -4 and a number is equal to -48 what is number, The sum of -4 an...

The sum of -4 and a number is equal to -48. What is the number? Let x = the number. Because sum is a key word for addition, the equation is -4 + x = -48. Add 4 to both sides o

What is the difference in the two low temperatures, The low temperature in ...

The low temperature in Anchorage, Alaska present was -4°F. The low temperature in Los Angeles, California was 63°F. What is the difference in the two low temperatures? Visualiz

Learning, my math skills are keeping me from getting my ged need help in al...

my math skills are keeping me from getting my ged need help in all areas

Analysis and optimization, 1. In an in finite horizon capital/consumption m...

1. In an in finite horizon capital/consumption model, if kt and ct are the capital stock and consumption at time t, we have f(kt) = ct+kt+1 for t ≥ 0 where f is a given production

Algebra, If a^n+1 + b^n+1/a^n + b^n is the arithmetic mean of a and b then ...

If a^n+1 + b^n+1/a^n + b^n is the arithmetic mean of a and b then find n. Answer:Arithmatic mean of a,b is =(a+b)/2  from the problem (a+b)/2=(a^n+1 +b ^n+1)/(a^n+b^n)  then (a+

Generic rectangles and greatest common factors, miaty and yesenia have a gr...

miaty and yesenia have a group of base ten blocks.Misty has six more than yesnia. Yesenia''s blocks repersent 17 together they have 22 blocks,and the total of blocks repersent 85.

Write algorithm for the multiplication of a 3-digit number, E1) Why do we s...

E1) Why do we shift the place by one, of the result in the second row of the calculation, when we multiply, say, 35 by 237 E2) Write down the algorithm for the multiplication of

Rank correlation coefficient, Rank Correlation Coefficient Also ident...

Rank Correlation Coefficient Also identified as the spearman rank correlation coefficient, its reasons is to establish whether there is any form of association among two vari

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd