Sketch several trajectories for the system, Mathematics

Assignment Help:

Sketch several trajectories for the system,

x1' = x1 + 2x2                                                                               

x2' = 3x1 + 2x2

694_Sketch several trajectories for the system.png

Solution

Therefore, what we require to do is pick several points in the phase plane, plug them in the right side of the system. We'll perform it for a couple of points.

39_Sketch several trajectories for the system1.png

Therefore, what does it tell us? Fine at the point (-1, 1) under the phase plane there will be a vector pointing toward <1,-1>. At the point (2,0) here will be a vector pointing toward <2, 6>. At the point (-3,-2) here will be a vector pointing toward <-7, -13>. Doing this for a huge number of points under the phase plane will provide the subsequent sketch of vectors.

358_Sketch several trajectories for the system2.png

Here all we require to do is sketch in some trajectories. To perform this all we require to do is keep in mind that the vectors in the sketch above are tangent to the trajectories. As well as the directions of the vectors provide the direction of the trajectory as t raises thus we can demonstrate the time dependence of the solution with adding in arrows to the trajectories.

Doing this provides the following sketch.

75_Sketch several trajectories for the system3.png

This sketch is termed as the phase portrait. Generally phase portraits only comprise the trajectories of the solutions and not any vectors. Each of our phase portraits by this point on will only contain the trajectories.

Under this case this looks like most of the solutions will begin away from the equilibrium solution after that as t begins to increase they move in the directions of the equilibrium solution and then finally start moving away from the equilibrium solution again.

There appear to be four solutions which have slightly different behaviors. This looks like two of the solutions will begin at or near at least the equilibrium solution and them move straight away from.

It whiles two other solution starts away from the equilibrium solution and after that move straight in directions of the equilibrium solution.

In these types of cases we describe as the equilibrium point a saddle point and we term as the equilibrium point under this case unstable as all but two of the solutions are moving away from this as t increases.

Since we noted previous this is not usually the way which we will sketch trajectories. All we really require to find the trajectories are the eigen-values and eigen-vectors of the matrix A. We will notice how to do this over the subsequent couple of sections as we resolve the systems.

Now there are some more phase portraits so you can notice some more possible illustrations. We'll in fact be generating several of these during the course of the subsequent couple of sections.

1534_Sketch several trajectories for the system4.png

1806_Sketch several trajectories for the system5.png

Not all probable phase portraits have been demonstrated here. These are now to demonstrate you a few of the possibilities. Ensure to notice that several types can be either asymptotically unstable or stable depending upon the direction of the arrows.

Remember the difference in among stable and asymptotically stable. For an asymptotically stable node or spiral all the trajectories will shifts in the directions of the equilibrium point as t increases, while a center that is always stable trajectory will just move around the equilibrium point although never really move in towards this.


Related Discussions:- Sketch several trajectories for the system

Relative maximum point, Relative maximum point The above graph of the ...

Relative maximum point The above graph of the function slopes upwards to the right between points C and A and thus has a positive slope among these two points. The function ha

Difference between probability and statistics, Q. Difference between Probab...

Q. Difference between Probability and statistics? Ans. Probability and statistics are used in many different aspects of life. What are they and why are they so popular?

What is the value of m+n, Every point (x,y) on the curve y=log2 3x is trans...

Every point (x,y) on the curve y=log2 3x is transferred to a new point by the following translation (x',y')=(x+m,y+n), where m and n are integers. The set of (x',y') form the curve

Example to understanidng of multiplication, 6-year-old Rahul wasn't able to...

6-year-old Rahul wasn't able to understand multiplication when it was thrust upon him in school. His mother discussed this problem with some of us. On the basis of suggestions that

Derivative problem, we know that derivative of x 2 =2x. now we can write x...

we know that derivative of x 2 =2x. now we can write x 2 as x+x+x....(x times) then if we take defferentiation we get 1+1+1+.....(x times) now adding we get x . then which is wro

Conscious consumer, a group of 3o students is planning a thanksgiving party...

a group of 3o students is planning a thanksgiving party items needed hats @ $2.50 each.noise makers@$4.00 per pack of 5.Ballons @$5.00 per pack of 10.how many packs of noisemakers

Derivatives of trig functions, Derivatives of Trig Functions In this s...

Derivatives of Trig Functions In this section we will see derivatives of functions other than polynomials or roots of polynomials. We'll begin this process off through taking

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd