Show power and power factor in ac circuits, Electrical Engineering

Assignment Help:

Q. Show Power and Power Factor in ac Circuits?

Power is the rate of change of energy with respect to time. The unit of power is a watt (W), which is a joule per second (J/s). The use of rms or effective values of voltage and current allows the average power to be found from phasor quantities. Let us consider a circuit consisting of an impedance Z φ = R + jX excited by an applied voltage of v(t) = √2 Vrmscos (ωt + φ), producing a current of i(t) =√2 Irmscosωt . The corresponding voltage and current phasors are then given by V φ and I0°, which satisfy the Ohm's-law relation ¯ V/ ¯ I = V φ/I 0° = Z φ.

The instantaneous power p(t) supplied to the network by the source is

1343_Show Power and Power Factor in ac Circuits.png

which can be rearranged as follows by using trigonometric relations:

2034_Show Power and Power Factor in ac Circuits1.png

Atypical plot of p(t) is shown in Figure, revealing that it is the sumof an average component, VrmsIrms cos φ, which is a constant that is time independent, and a sinusoidal component, VrmsIrms cos(2ωt +φ), which oscillates at a frequency double that of the original source frequency and has zero average value. The average component represents the electric power delivered to the circuit, whereas the sinusoidal component reveals that the energy is stored over one part of the period and released over another, thereby denoting no net delivery of electric energy. It can be seen that the power p(t) is pulsating in time and its time-average value P is given by Pav = Vrms Irms cos φ since the time-average values of the terms cos 2ωt and sin 2ωt are zero. Note that φ is the angle associated with the impedance, and is also the phase angle between the voltage and the current.

The term cos φ is called the power factor. An inductive circuit, in which the current lags the voltage, is said to have a lagging power factor, whereas a capacitive circuit, in which the current leads the voltage, is said to have a leading power factor. Notice that the power factor associated with a purely resistive load is unity, whereas that of a purely inductive load is zero (lagging) and that of a purely capacitive load is zero (leading).


Related Discussions:- Show power and power factor in ac circuits

Ampliier, importance of amplifier in electronic circuits

importance of amplifier in electronic circuits

States kirchoff''s voltage law, States Kirchoff's Voltage Law Kirchoff...

States Kirchoff's Voltage Law Kirchoff's Voltage Law (KVL) describes in any closed loop in a network, the algebraic sum Figure of the voltage drops (i.e. products of current

Basic architecture of digital switching systems, Q. Explain the basic archi...

Q. Explain the basic architecture of digital switching systems. Explain in detail companding. Ans: A simple N X N time division space switch is displayed in Figure. Switch

Find the fourier transform of the signal, Problem (a) Give an example...

Problem (a) Give an example of a power signal and one example of an energy signal. (b) Given a periodic signal x (t) = A sin (2Bft). Calculate the power Px. (c) Diffe

Why negative feedback is employed in wein bridge oscillator, Q. Why negativ...

Q. Why negative feedback is employed in Wein Bridge Oscillator. Also explain the working of oscillator? The Wein Bridge Oscillator consists of two stages of the RC coupled ampl

Explain series circuit, Series circuit Total resistance, R T = R1 + R2...

Series circuit Total resistance, R T = R1 + R2 + R3 The current I is the same in all parts of the circuit , I = I 1 = I 2 = I 3 The voltage drop at each resistor, V1,

Develop a block diagram for a two-port network, Q. The equations for a two-...

Q. The equations for a two-port network are given by V 1 = z 11 I 1 + z 12 I 2 0 = z 21 I 1 + (z 22 + Z L )I 2 V 2 = - I 2 Z L (a) Satisfying the equations, dev

Paper on Matrix Computer Methods, 5 page paper on matrix and computer metho...

5 page paper on matrix and computer methods applied to Linear Gear trains

Compute the pull on the plunger, Q. A sectional view of a cylindrical iron-...

Q. A sectional view of a cylindrical iron-clad plunger magnet is shown in figure. The small air gap between the sides of the plunger and the iron shell is uniform and 0.25 mm long.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd