Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Q. Current-carrying conductors?
Current-carrying conductors, when placed in magnetic fields, experience mechanical force. Considering only the effect of the magnetic field, the Lorentz force equation gives the force F as
F = BlI
when a current-carrying conductor of length l is located in a uniform magnetic field of flux density B, and the direction of the current in the conductor is perpendicular to the direction of the magnetic field. The direction of the force is orthogonal (perpendicular) to the directions of both the current-carrying conductor and the magnetic field. Equation is often used in electric machine analysis.
The principle of interaction is illustrated in Figure, in which ¯B is the flux density, ¯I the current, and ¯F the force. Shown in Figure (a) is the flux density ¯B of an undisturbed uniformfield, on which an additional field is imposed due to the introduction of a current-carrying conductor. For the case in which the current is directed into and perpendicular to the plane of the paper, the resultant flux distribution is depicted in Figure (b). It can be seen that in the neighborhood of the conductor the resultant flux density is greater than B on one side and less than B on the other side. The direction of the mechanical force developed is such that it tends to restore the field to its original undisturbed and uniform configuration. Figure (c) shows the conditions corresponding to the current being in the opposite direction to that of Figure (b).
The force is always in such a direction that the energy stored in the magnetic field is minimized. Figure shows a one-turn coil in a magnetic field and illustrates how torque is produced by forces caused by the interaction between current-carrying conductors and magnetic fields.
make the following conversion 1000 Mx to Wb
what is quality factor in term circuit analysis
Do you provide me matlab code for comparison the performance of decision feedback equalizer over MLSE
DC Motor Starting When voltage is applied to the armature of a dcmotorwith the rotor stationary, no emf is generated and the armature current is limited only by the internal ar
Q. Need of Microphone in telephone hand set? Microphone: For all practical purposes, microphone is transmitter for telephone. The microphone converts acoustical signals in the
I need the solutions for this assignment
Q. Explain braking mode of rotating machines? The braking mode has both mechanical and electric energy input. The total input is dissipated as heat. The machine is driven by th
Explain the Cylindrical or Round Rotors? All synchronous machines have a similar stator design and it is actually the rotor construction that makes them different. The rotor is
Applications Platform: GIS applications should be capable to act as a base system over which the other business process application can be integrated which is the objective of
For the circuit of Figure, given that V CC = 5V, R C = 1k, β = 100, and the high range is 4 to 5 V, choose R B such that any high input will saturate the transistor with the ba
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd