Current-carrying conductors, Electrical Engineering

Assignment Help:

Q. Current-carrying conductors?

Current-carrying conductors, when placed in magnetic fields, experience mechanical force. Considering only the effect of the magnetic field, the Lorentz force equation gives the force F as

F = BlI

when a current-carrying conductor of length l is located in a uniform magnetic field of flux density B, and the direction of the current in the conductor is perpendicular to the direction of the magnetic field. The direction of the force is orthogonal (perpendicular) to the directions of both the current-carrying conductor and the magnetic field. Equation is often used in electric machine analysis.

The principle of interaction is illustrated in Figure, in which ¯B is the flux density, ¯I the current, and ¯F the force. Shown in Figure (a) is the flux density ¯B of an undisturbed uniformfield, on which an additional field is imposed due to the introduction of a current-carrying conductor. For the case in which the current is directed into and perpendicular to the plane of the paper, the resultant flux distribution is depicted in Figure (b). It can be seen that in the neighborhood of the conductor the resultant flux density is greater than B on one side and less than B on the other side. The direction of the mechanical force developed is such that it tends to restore the field to its original undisturbed and uniform configuration. Figure (c) shows the conditions corresponding to the current being in the opposite direction to that of Figure (b).

556_Current-carrying conductors.png

The force is always in such a direction that the energy stored in the magnetic field is minimized. Figure shows a one-turn coil in a magnetic field and illustrates how torque is produced by forces caused by the interaction between current-carrying conductors and magnetic fields.


Related Discussions:- Current-carrying conductors

Can you show the decimal to octal conversion, Q. Can you show the Decimal t...

Q. Can you show the Decimal to Octal Conversion? To convert decimal to octal is somewhat more difficult. The usual method to convert from decimal to octal is repeated division

Pdc, disadvantages of shunt&series clippers

disadvantages of shunt&series clippers

Electric automobile system specifications, The automobile shall not rely on...

The automobile shall not rely on fossil fuel for energy. The automobile shall be designed using available and emerging technology. The automobile shall seat at least five

Overcoming power shortages, Overcoming power shortages: NEP aims at me...

Overcoming power shortages: NEP aims at meeting both energy and peak demand fully through 2012 along within creating 5 percent spinning reserves at national level. The policy

Draw the equivalent circuits referred to the high-voltage, A single-phase, ...

A single-phase, 50-kVA, 2400:240-V, 60-Hz distribution transformer has the following parameters: Resistance of the 2400-V winding R1 = 0.75 Resistance of the 240-V winding R2

Draw the implementation of time invariant system, Draw the implementation o...

Draw the implementation of time-invariant system A linear time-invariant system is described by the difference equation: y[n] = 2x[n] - 3x[n - 1] + 2x[n - 2]   Draw the i

How linear sweep voltage is generated, Q. With a suitable block circuit, sh...

Q. With a suitable block circuit, show how linear sweep voltage is generated ? The above figure shows a basic sweep waveform generator. The switching action of the switch

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd