Rotation about z-axis - transformation for 3-d rotation, Computer Graphics

Rotation about z-axis - Transformation for 3-d rotation

Rotation about z-axis is explained by the xy-plane. Suppose a 3-D point P(x,y,z) be rotated to P'(x',y',z') along with angle of rotation q see Figure 9. Because both P and P' lies upon xy-plane so z=0 plane their z components keeps similar as z=z'=0.

2469_Rotation about z-axis - Transformation for 3-d rotation.png

Figure a                                                                            Figure b

Thus, P'(x'y',0) be the effect of rotation of point P(x,y,0) making a +ive or anticlockwise angle φ with value of z=0 plane, as demonstration in Figure 10. From figure (10),

P(x,y,0) = P(r.cos φ,r.sin θ,0)

P'(x',y',0)=P[r.cos(φ + θ),rsin(φ + θ),0]

The coordinates of P' are as:

x'=r.cos(θ + φ) = r(cos θ cos φ - sin θ sin φ)

=x.cos θ - y.sin θ      (where x=rcos φ and y=rsin φ)

As the same;

y'= rsin(θ + φ)=r(sin θ cos φ + cos θ.sin φ)

=xsin θ +ycos θ

Hence,

1229_Rotation about z-axis - Transformation for 3-d rotation 1.png

Posted Date: 4/3/2013 6:06:35 AM | Location : United States







Related Discussions:- Rotation about z-axis - transformation for 3-d rotation, Assignment Help, Ask Question on Rotation about z-axis - transformation for 3-d rotation, Get Answer, Expert's Help, Rotation about z-axis - transformation for 3-d rotation Discussions

Write discussion on Rotation about z-axis - transformation for 3-d rotation
Your posts are moderated
Related Questions
Computations with Phong Shading Computations involved along with Phong Shading:  i)   Find out average unit normal vector at each polygon vertex. ii)   Linearly interpol

Projections - Viewing Transformation Specified 3-D object in a space, Projection can be explained as a mapping of 3-D object into 2-D viewing screen. Now, 2-D screen is termed

What is orthographic parallel projection?  When the direction of the projection is normal (perpendicular) to the view plane then the projection is called as orthographic paral

Limitations of Cohen Sutherland line clipping Algorithm The algorithm is merely applicable to rectangular windows and not to the other convex shaped window. Consequently, a

Illustrate the Advantages of using virtual reality - it's safer (As techniques can be tried out in advance without the dangers of real operation for example maintaining a nucle

A color histogram is a representation of the distribution of colors in an image. For digital images, a color histogram represents the number of pixels that have colors in each of a

(a)  Voltage or Electro-Magnetic Field Tablet and Pointer: This has a grid of wires, embedded in the tablet surface along with various voltages or magnetic fields consequent to va

Q.   Describe the z- Buffer algorithm for hidden surface removal. Ans. Z- buffer method: This method compares surface depths at each pixel position on the projection plane. T


Properties of Perspective projections - Transformation 1) Faraway objects seem smaller. 2) Straight lines are projected to straight lines. 3) Let line 1 and 2 is two s