Rotation about the origin - 2-d and 3-d transformations, Computer Graphics

Rotation about the origin - 2-d and 3-d transformations

Specified a 2-D point P(x,y), which we need to rotate, along with respect to the origin O. The vector OP has a length 'r' and making a +ive or anticlockwise angle φ with respect to x-axis.

 Suppose P' (x'y') be the outcome of rotation of point P by an angle θ regarding the origin that is demonstrated in Figure 3.

1337_Rotation about the origin - 2-d and 3-d transformations.png

P(x,y) = P(r.cos φ,r.sin φ)

P'(x',y')=P[r.cos(φ+ θ),rsin(φ+ θ)]

The coordinates of P' are as:

x'=r.cos(θ+ φ)=r(cos θ cos φ -sin θ sin φ)

=x.cos θ -y.sin θ     (where x=rcosφ and y=rsinφ)

As like;

y'= rsin(θ+ φ)=r(sinθ cosφ + cosθ.sinφ)

=xsinθ+ycosθ

Hence,

1628_Rotation about the origin - 2-d and 3-d transformations 1.png

Hence, we have acquired the new coordinate of point P after the rotation. Within matrix form, the transformation relation among P' and P is specified by:

346_Rotation about the origin - 2-d and 3-d transformations 2.png

There is P'=P.Rq                                               ---------(5)

Here P'and P represents object points in 2-Dimentional Euclidean system and Rq is transformation matrix for anti-clockwise Rotation.

In terms of Homogeneous Coordinates system, equation (5) becomes as

2409_Rotation about the origin - 2-d and 3-d transformations 3.png

There is P'h=Ph.Rq,                                                     ---------(7)

Here P'h and Ph   represent object points, after and before needed transformation, in Homogeneous Coordinates and Rq is termed as homogeneous transformation matrix for anticlockwise  or =ive Rotation. Hence, P'h, the new coordinates of a transformed object, can be determined by multiplying previous object coordinate matrix, Ph, along with the transformation matrix for Rotation Rq.

Keep in mind that for clockwise rotation we have to put q = -q, hence the rotation matrix Rq , in Homogeneous Coordinates system, becomes:

1007_Rotation about the origin - 2-d and 3-d transformations 4.png

Posted Date: 4/3/2013 5:18:10 AM | Location : United States







Related Discussions:- Rotation about the origin - 2-d and 3-d transformations, Assignment Help, Ask Question on Rotation about the origin - 2-d and 3-d transformations, Get Answer, Expert's Help, Rotation about the origin - 2-d and 3-d transformations Discussions

Write discussion on Rotation about the origin - 2-d and 3-d transformations
Your posts are moderated
Related Questions
Explain the differences among a general graphics system designed for a programmer and one designed for a specific application, such as architectural design? Basically, package

What is Computer Graphics. Computer graphics remains most existing and rapidly growing computer fields. Computer graphics may be explained as a pictorial representation or gra

3-D Modeling and Animation Tools: By 3-D modeling software, objects rendered in perspective show more realistic. One can produce stunning scenes and wander by them, choosing just

Consider a raster system with the resolution of 1024 x 768 pixels and the color palette calls for 65,536 colors. What is the minimum amount of video RAM that the computer must have

Determine the transformation matrix for the reflection about the line y = x. Solution: The transformation for mirror reflection regarding to the line y = x, comprises the subs

Write a function that computes the area of a triangle given the length of its three sides as parameters (see Programming Exercise 9 from Chapter 3). Use your function to augment tr

Computer Animation Tools  To create various types of animation discussed above, we want to have particular software and hardware as well. Here, the fundamental constraint is re

Illustration: Find the normalization transformation N that uses the rectangle W (1, 1), X (5, 3), Y (4, 5) and Z (0, 3) as a window and also the normalized device screen like the


Gourand shading and Phong shading a. Gourand shading OR Intensity interpolation scheme We will discuss such scheme in further section of Gourand shading OR Intensity in