Pumping lemma constant, Theory of Computation

a) Let n be the pumping lemma constant. Then if L is regular, PL implies that s can be decomposed into xyz, |y| > 0, |xy| ≤n, such that xy i z is in L for all i ≥0.

Since the length of xy ≤n, y consists of all b's Then xy 2 z = anbncn, where the length of of y = j. We know j > 0 so the length of the pumped string contains at as many a's as b's as c's, and is not in L. This is a Contradiction L = {w :| n a (w) = n b (w) = nc(w)}

b)

  • Let n be the pumping lemma constant. Then if L is regular, PL implies that s = anbncm can be decomposed into xyz, |y| > 0, |xy| ≤n, such thatxy i z is in L for all i ≥0.
  • Since the length of xy ≤n, there are three ways to partition s:

1. y consists of all a's

Pumping y will lead to a string with more than n a's -- not in L

2. y consists of all b's

Pumping y will lead to a string with more than m b's, and leave

the number of c's untouched, such that there are no longer 2n more c's than b's -- not in L

3. y consists of a's and b's

Pumping y will lead to a string with b's before a's, -- not in L

  • There is no way to partition anbncm that pumped strings are still in L.
Posted Date: 2/23/2013 12:53:05 AM | Location : United States







Related Discussions:- Pumping lemma constant, Assignment Help, Ask Question on Pumping lemma constant, Get Answer, Expert's Help, Pumping lemma constant Discussions

Write discussion on Pumping lemma constant
Your posts are moderated
Related Questions
proof ogdens lemma .with example i am not able to undestand the meaning of distinguished position .

DEGENERATE OF THE INITIAL SOLUTION

The path function δ : Q × Σ* → P(Q) is the extension of δ to strings: This just says that the path labeled ε from any given state q goes only to q itself (or rather never l


i want to do projects for theory of computation subject what topics should be best.

what exactly is this and how is it implemented and how to prove its correctness, completeness...

The initial ID of the automaton given in Figure 3, running on input ‘aabbba' is (A, aabbba) The ID after the ?rst three transitions of the computation is (F, bba) The p

c program to convert dfa to re

(c) Can you say that B is decidable? (d) If you somehow know that A is decidable, what can you say about B?