Pumping lemma constant, Theory of Computation

a) Let n be the pumping lemma constant. Then if L is regular, PL implies that s can be decomposed into xyz, |y| > 0, |xy| ≤n, such that xy i z is in L for all i ≥0.

Since the length of xy ≤n, y consists of all b's Then xy 2 z = anbncn, where the length of of y = j. We know j > 0 so the length of the pumped string contains at as many a's as b's as c's, and is not in L. This is a Contradiction L = {w :| n a (w) = n b (w) = nc(w)}

b)

  • Let n be the pumping lemma constant. Then if L is regular, PL implies that s = anbncm can be decomposed into xyz, |y| > 0, |xy| ≤n, such thatxy i z is in L for all i ≥0.
  • Since the length of xy ≤n, there are three ways to partition s:

1. y consists of all a's

Pumping y will lead to a string with more than n a's -- not in L

2. y consists of all b's

Pumping y will lead to a string with more than m b's, and leave

the number of c's untouched, such that there are no longer 2n more c's than b's -- not in L

3. y consists of a's and b's

Pumping y will lead to a string with b's before a's, -- not in L

  • There is no way to partition anbncm that pumped strings are still in L.
Posted Date: 2/23/2013 12:53:05 AM | Location : United States







Related Discussions:- Pumping lemma constant, Assignment Help, Ask Question on Pumping lemma constant, Get Answer, Expert's Help, Pumping lemma constant Discussions

Write discussion on Pumping lemma constant
Your posts are moderated
Related Questions
Another striking aspect of LTk transition graphs is that they are generally extremely ine?cient. All we really care about is whether a path through the graph leads to an accepting



write short notes on decidable and solvable problem

s->0A0|1B1|BB A->C B->S|A C->S|null find useless symbol?

Proof (sketch): Suppose L 1 and L 2 are recognizable. Then there are DFAs A 1 = (Q,Σ, T 1 , q 0 , F 1 ) and A 2 = (P,Σ, T 2 , p 0 , F 2 ) such that L 1 = L(A 1 ) and L 2 = L(

The computation of an SL 2 automaton A = ( Σ, T) on a string w is the maximal sequence of IDs in which each sequential pair of IDs is related by |- A and which starts with the in

So we have that every language that can be constructed from SL languages using Boolean operations and concatenation (that is, every language in LTO) is recognizable but there are r

Applying the pumping lemma is not fundamentally di?erent than applying (general) su?x substitution closure or the non-counting property. The pumping lemma is a little more complica

State and Prove the Arden's theorem for Regular Expression