Proof of root test - sequences and series, Mathematics

Assignment Help:

Proof of Root Test 

Firstly note that we can suppose without loss of generality that the series will initiate at n = 1 as we've done for all our series test proofs.  As well note that this proof is very identical to the proof of the Ratio Test. Let us start off the proof here by suppose that 1 L < and we will need to illustrate that ∑an is absolutely convergent.  To do this let's first note that as L < 1 there is some number r like L < r < 1.

Now, remind that,

2166_Proof of Root Test 1.png

and because we as well as have chosen r such that  L< r there is some N like if  n ≥ N we will have,

1847_Proof of Root Test 2.png

Here now the series

1312_Proof of Root Test 3.png

is a geometric series and as 0 < r < 1 we in fact know that it is a convergent series. As well because |an < rn| n≥N  through the Comparison test the series

1540_Proof of Root Test 4.png

is convergent. Though since,

2204_Proof of Root Test 5.png

we are be familiar with that

391_Proof of Root Test 6.png

is as well convergent as the first term on the right is a finite sum of finite terms and hence finite.  Hence

525_Proof of Root Test 7.png

is absolutely convergent.

Subsequently, we need to assume that L >1 and we'll need to illustrate that ∑an is divergent. reminding that,

1145_Proof of Root Test 8.png

and as L > 1 we know that there should be some N such that if  n > N we will have,

35_Proof of Root Test 9.png

Though, if  |an| > 1 for all  n ≥ N after that we know that,

1899_Proof of Root Test 10.png

The meaning of this is like this:

1338_Proof of Root Test 11.png

Hence, by the Divergence Test ∑an is divergent.

At last, we need to assume that L= 1and show that we could get a series which has any of the three possibilities.  To do this we just require a series for each case.  We'll leave the facts of checking to you but all three of the following series have L= 1 and each one shows one of the probabilities.

2403_Proof of Root Test 12.png


Related Discussions:- Proof of root test - sequences and series

Explain peano''s axioms with suitable example, Question 1 Explain Peano's ...

Question 1 Explain Peano's Axioms with suitable example Question 2 Let A = B = C= R, and let f: A→ B, g: B→ C be defined by f(a) = a+1 and g(b) = b 2 +1. Find a) (f °g

Find the height of the building, A building is in the form of a cylinder su...

A building is in the form of a cylinder surrounded by a hemispherical vaulted dome and contains   41(19/21-) cu m of air. If the internal diameter of the building is equal to its t

Tower of hanoi, how to create an activity of tower of hanoi

how to create an activity of tower of hanoi

Objectives of helping children learn mathematics, Objectives After stud...

Objectives After studying this leaarn maths; you should be able to explain why a teacher needs to know the level of development of hi; her learners; identify the way

What percent of her money did she spend on lunch, Wendy brought $16 to the ...

Wendy brought $16 to the mall. She spent $6 on lunch. What percent of her money did she spend on lunch? Divide $6 by $16 to ?nd out the percent; $6 ÷ $16 = 0.375; 0.375 is equi

Parallelogram, fig angles of a irregular polygons exterior and interior .

fig angles of a irregular polygons exterior and interior .

Find the circumference of a circle, Find the circumference of a circle whos...

Find the circumference of a circle whose area is 16 times the area of the circle with diameter 7cm            (Ans: 88cm) Ans:     Π R 2 = 16 Π  r 2 R 2 = 16 r 2

Experience language pictures symbols-e - l - p - s , E - L - P - S : Has t...

E - L - P - S : Has the title of this section stumped you? Children, similarly, don't understand new symbols that are thrust upon them without giving them an adequate grounding. Y

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd