Least common denominator, Mathematics

Assignment Help:

Let's recall how do to do this with a rapid number example.

                                                    5/6 - 3/4

In this case we required a common denominator & remember that usually it's best to use the least common denominator, frequently denoted as lcd. In this case the least common denominator is 12.  So we have to get the denominators of these two fractions to a 12. It is easy to do. In the first case we have to multiply the denominator by 2 to acquire 12 so we will multiply the numerator & denominator of the first fraction by 2.  Recall that we've got to multiply the numerator and denominator both by the similar number as we aren't allowed to actually change the problem and it is equivalent to multiplying the fraction through 1 since (a/a)=1. .  For the second term we'll need to multiply the numerator & denominator by a 3.

 (5/6)-(3/4)=5(2)/6(2)-3(3)/4(3)=(10/2)-(9/12)=(10-9)/12=(1/12)

Now, the procedure for rational expressions is identical. The main complexity is finding the least common denominator.  However, there is a really simple process for finding the least common denominator for rational expressions.  Here is it.

1. Factor all the denominators.

2. Write each factor which appears at least once in any of the denominators.  Do not write down the power which is on each factor, just write down the factor

3. Now, for each of the factor written down in the earlier step write the largest power that takes place in all the denominators containing that factor.

4. The product all the factors from the earlier step is the least common denominator.


Related Discussions:- Least common denominator

Geometry, write a proof on proving triangles are congruent.

write a proof on proving triangles are congruent.

Applications of derivatives rate change, Application of rate change Bri...

Application of rate change Brief set of examples concentrating on the rate of change application of derivatives is given in this section.  Example    Find out all the point

How to adding polynomials, How to Adding Polynomials? The numerical par...

How to Adding Polynomials? The numerical part of a monomial is called the coefficient. For example, the coefficient of 5x is 5. The coefficient of -7a 2 b 3 is -7. Like

Differences of squares and other even powers, Differences of Squares (and o...

Differences of Squares (and other even powers) ? A square monomial is a monomial which is the square of another monomial. Here are some examples: 25 is the square of 5 x 2 i

Find out primes of each denominator, Find out primes of each denominator: ...

Find out primes of each denominator: Add 1/15 and 7/10 Solution: Step 1:             Find out primes of each denominator. 15 = 5 x 3 10 = 5 x 2 Step 2:

Operation research, approximate the following problem as a mixed integer pr...

approximate the following problem as a mixed integer program. maximize z=e-x1+x1+(x2+1)2 subject to x12+x2 =0

Multiplication and division should be learnt intermeshed, E1) Do you agree ...

E1) Do you agree that multiplication and division should be learnt intermeshed with each other, or not? Give reasons for your answer.  E2) How would you explain to children wh

Lim.., how can solve limits

how can solve limits

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd