Myhill graphs, Theory of Computation

Another way of representing a strictly 2-local automaton is with a Myhill graph. These are directed graphs in which the vertices are labeled with symbols from the input alphabet of the automaton (plus {x,x}), with an edge from a vertex labeled σ1 to a vertex labeled σ2 ix the pair σ1σ2 is included in T. (Note that if we interpret the strings in T as pairs of symbols, then the Myhill graph of A = (Σ, T) is just G = (Σ+, T).) The Myhill graph of the automaton of Figure 2 is given in Figure. For consistency with the graphs we will use later, the entry point to the graph is indicated with an edge "from nowhere" and the exit point is indicated by circling it.

The key property of Myhill graphs is that every path through the graph from the ‘x' node to the ‘x' node corresponds to a computation of the automaton and every computation of the automaton corresponds to such a path. So we can reason about the strings that are accepted by the automaton by reasoning about the sequences of nodes that occur on paths from ‘x' to ‘x'. (For simplicity, we will refer to paths from ‘x' to ‘x' as "paths through the graph".)

For example, the shortest strings in the language recognized by the automaton will those labeling the shortest paths through the graph, which is to say, the acyclic paths from ‘x' to ‘x'. In this particular case, these are the paths (x,x) and (x, a, b,x), corresponding to the strings ε and ab.

Posted Date: 3/21/2013 5:54:10 AM | Location : United States

Related Discussions:- Myhill graphs, Assignment Help, Ask Question on Myhill graphs, Get Answer, Expert's Help, Myhill graphs Discussions

Write discussion on Myhill graphs
Your posts are moderated
Related Questions
The computation of an SL 2 automaton A = ( Σ, T) on a string w is the maximal sequence of IDs in which each sequential pair of IDs is related by |- A and which starts with the in

Exercise Show, using Suffix Substitution Closure, that L 3 . L 3 ∈ SL 2 . Explain how it can be the case that L 3 . L 3 ∈ SL 2 , while L 3 . L 3 ⊆ L + 3 and L + 3 ∈ SL

De?nition Deterministic Finite State Automaton: For any state set Q and alphabet Σ, both ?nite, a ?nite state automaton (FSA) over Q and Σ is a ?ve-tuple (Q,Σ, T, q 0 , F), w

(c) Can you say that B is decidable? (d) If you somehow know that A is decidable, what can you say about B?

Suppose A = (Q,Σ, T, q 0 , F) is a DFA and that Q = {q 0 , q 1 , . . . , q n-1 } includes n states. Thinking of the automaton in terms of its transition graph, a string x is recogn

A Turing machine is a theoretical computing machine made-up by Alan Turing (1937) to serve as an idealized model for mathematical calculation. A Turing machine having of a line of

Let L1 and L2 be CGF. We show that L1 ∩ L2 is CFG too. Let M1 be a decider for L1 and M2 be a decider for L2 . Consider a 2-tape TM M: "On input x: 1. copy x on the sec

De?nition (Instantaneous Description) (for both DFAs and NFAs) An instantaneous description of A = (Q,Σ, δ, q 0 , F) , either a DFA or an NFA, is a pair h q ,w i ∈ Q×Σ*, where

Question 2 (10 pt): In this question we look at an extension to DFAs. A composable-reset DFA (CR-DFA) is a five-tuple, (Q,S,d,q0,F) where: – Q is the set of states, – S is the alph