Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
In these problems we will begin with a substance which is dissolved in a liquid. Liquid will be entering as well as leaving a holding tank. The liquid entering the tank may or may not hold more of the substance dissolved into it. Liquid leaving the tank will of course comprise the substance dissolved in it. If Q (t) provides the amount of the substance dissolved into the liquid in the tank at any time t we need to develop a differential equation that, as solved, will provide us an expression for Q(t). Remember as well that in several situations we can think of air as a liquid for the reasons of these kinds of discussions and thus we don't actually require having an actual liquid, though could instead use air like the "liquid".
The major assumption that we'll be using here is which the concentration of the substance in the liquid is uniform during the tank. Obviously it will not be the case, although if we permit the concentration to vary depending upon the location into the tank the problem turns into very difficult and will include partial differential equations that are not the focus of this course.
The most important "equation" which we'll be using to model this situation is as:
Rate of change of Q(t) = Rate at that Q(t) enters the tank - Rate at that Q(t) exits the tank
Here,
Rate of change of Q(t) = dQ/dt = Q'(t)
Rate at that Q(t) enters the tank= (flow rate of liquid entering) x (concentration of substance in liquid entering
Rate at that Q(t) exits the tank = (flow rate of liquid exiting) x (concentration of substance in liquid exiting)
explain how business mathematics in an inbu;it component of a payroll package
Types of distribution Population distribution This refers to the distribution of the individual values of population. This mean it is denoted by 'µ' Sample distributi
Divide 6.8 × 10 5 by 2.0 × 10 2 . Write your answer in scientific notation? To divide numbers written in scienti?c notation and divide the ?rst numbers (6.8 ÷ 2.0 = 3.4); the
using v=g/k(1-e^-kt) find the velocity of the skydiver when k is 0.015
solve: 4ydx+xdy=0
Derivatives of Hyperbolic Functions : The last set of functions which we're going to be looking at is the hyperbolic functions. In several physical situations combinations of e
The ratio of the sum of first n terms of two AP's is 7n+1:4n+27. Find the ratio of their 11th terms . Ans: Let a 1 , a 2 ... and d 1 , d 2 be the I terms are Cd's of t
what is dot
how it is
If p=10 when q=2,find p when q=5
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd