The mean value theorem for integrals of even and odd , Mathematics

Assignment Help:

The Mean Value Theorem for Integrals

If  f (x ) is a continuous function on [a,b] then there is a number c in [a,b] such as,

                                   ∫baf ( x ) dx = f (c ) (b - a )

Note as well that one way to think of this theorem is the following.  Firstly rewrite the result as,

                               1/( b - a)  ∫baf ( x ) dx =f(c)

and from this we can illustrates that this theorem is telling us that there is a number a < c < b such that favg  = f (c ) . Or, in other terms, if f (x) is continuous function then somewhere within [a,b] the function will take on its average value.

Let's take a rapid look at an example using this theorem.

Example:  Find out the number c which satisfies the Mean Value Theorem for Integrals for the function  f ( x ) =x2 + 3x + 2 within the interval [1,4]

 Solution

Firstly let's notice that the function is a polynomial and therefore is continuous on the given interval. It means that we can use the Mean Value Theorem.  Therefore, let's do that.

1 4 x2+3x+2dx = (c2+3c+2)(4-1)

( (1/3)x2 + (3/2) x2 +2x |14 =  3(c2  + 3c + 2)

                                      = 99/2 = 3c2 + 9c + 6

                                  0 = 3c2 + 9c - (87/2)

It is a quadratic equation which we can solve out.  Using the quadratic formula we obtain the following two solutions,

c = (-3 +√67)/2 = 2.593

c = (-3 -√67)/2 = -5.593

Obviously the second number is not within the interval and therefore that isn't the one that we're after. However, the first is in the interval and therefore that's the number we desire.

Note as well that it is possible for both numbers to be in the interval therefore don't expect only one to be in the interval.


Related Discussions:- The mean value theorem for integrals of even and odd

Basic operations for complex numbers, Now we have to discuss the basic oper...

Now we have to discuss the basic operations for complex numbers. We'll begin with addition & subtraction. The simplest way to think of adding and/or subtracting complex numbers is

SOLID MENSURATION, The base of an isosceles triangle and the altitude drawn...

The base of an isosceles triangle and the altitude drawn from one of the congruent sides are equal to 18cm and 15cm, respectively. Find the lengths of the sides of the triangle.

Mean is 8.32 find the median, In a frequency distribution mode is 7.88, mea...

In a frequency distribution mode is 7.88, mean is 8.32 find the median.  (Ans: 8.17) Ans:  Mode = 3 median - 2 mean 7.88 = 3 median - 2 x 8.32 7.88 +16.64 = 3 median

Capture a curvature in the relationship - quadratic model, 1. Consider the ...

1. Consider the model Y t = β 0 + β 1 X t + ε t , where t = 1,..., n.  If the errors ε t are not correlated, then the OLS estimates of  β 0   and β

Variation and proportion, i am not getting what miss has taught us please w...

i am not getting what miss has taught us please will you will help me in my studies

Determine the exterior angle, Using the sketch below and the fact that ∠A +...

Using the sketch below and the fact that ∠A + ∠B + ∠C + ∠D = 325, Determine m∠E.   a. 81° b. 35° c. 25° d. 75° b. The addition of the measures of the exterio

Trigonometric ratios, to difine trigonometric ratios of an angle,is it nece...

to difine trigonometric ratios of an angle,is it necessary that the initial ray of the angle must be positive x-axis?

Determine how maximum revenue with transportation model, The government is...

The government is auctioning off oil leases at two sites. At each site, 100,000 acres of land are to be auctioned. Cliff Ewing, Blake Barnes and Alexis Pickens are bidding for the

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd