The mean value theorem for integrals of even and odd , Mathematics

Assignment Help:

The Mean Value Theorem for Integrals

If  f (x ) is a continuous function on [a,b] then there is a number c in [a,b] such as,

                                   ∫baf ( x ) dx = f (c ) (b - a )

Note as well that one way to think of this theorem is the following.  Firstly rewrite the result as,

                               1/( b - a)  ∫baf ( x ) dx =f(c)

and from this we can illustrates that this theorem is telling us that there is a number a < c < b such that favg  = f (c ) . Or, in other terms, if f (x) is continuous function then somewhere within [a,b] the function will take on its average value.

Let's take a rapid look at an example using this theorem.

Example:  Find out the number c which satisfies the Mean Value Theorem for Integrals for the function  f ( x ) =x2 + 3x + 2 within the interval [1,4]

 Solution

Firstly let's notice that the function is a polynomial and therefore is continuous on the given interval. It means that we can use the Mean Value Theorem.  Therefore, let's do that.

1 4 x2+3x+2dx = (c2+3c+2)(4-1)

( (1/3)x2 + (3/2) x2 +2x |14 =  3(c2  + 3c + 2)

                                      = 99/2 = 3c2 + 9c + 6

                                  0 = 3c2 + 9c - (87/2)

It is a quadratic equation which we can solve out.  Using the quadratic formula we obtain the following two solutions,

c = (-3 +√67)/2 = 2.593

c = (-3 -√67)/2 = -5.593

Obviously the second number is not within the interval and therefore that isn't the one that we're after. However, the first is in the interval and therefore that's the number we desire.

Note as well that it is possible for both numbers to be in the interval therefore don't expect only one to be in the interval.


Related Discussions:- The mean value theorem for integrals of even and odd

Euilibrium, What is partial market equilibrium

What is partial market equilibrium

Cirlce Division, How can i calculate arc length for dividing a circle into ...

How can i calculate arc length for dividing a circle into 10 parts

Equivalence class and equivalence relation, 1. For a function f : Z → Z, le...

1. For a function f : Z → Z, let R be the relation on Z given by xRy iff f(x) = f(y). (a) Prove that R is an equivalence relation on Z. (b) If for every x ? Z, the equivalenc

Compound and simple interest, Your grandparents gave you a gift of R2 000 o...

Your grandparents gave you a gift of R2 000 on your 16th birth day. You want to invest the money in an account over four years. You have an option of investing the R2 000 at 8% per

Determine radicals in exponent form, Evaluate following.               ...

Evaluate following.                √16 and Solution To evaluate these first we will convert them to exponent form and then evaluate that since we already know how to

Please help me solve these Problems step by step, What angle (to the neares...

What angle (to the nearest degree) corresponds to the cos 0.6 or what is cos-1(0.6)? (Note: Use Appendix I) What angle (to the nearest degree) corresponds to the sin 0.6 or what

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd