Local suffix substitution closure, Theory of Computation

The k-local Myhill graphs provide an easy means to generalize the suffix substitution closure property for the strictly k-local languages.

Lemma (k-Local Suffix Substitution Closure) If L is a strictly k-local language then for all strings u1, v1, u2, and v2 in Σ* and all strings x in Σk-1 :

u1xv1 ∈ L and u2xv2 ∈ L ⇒ u1xv2 ∈ L.

The justi?cation is essentially identical to that of our original suffix substitution closure lemma. If L ∈ SLk then it is recognized by an SLk automaton. In the k-local Myhill graph of that automaton, any path from ‘?' to the vertex labeled x can be put together with any path from that vertex to ‘?' to produce a path that represents a string in L.

Posted Date: 3/22/2013 1:32:16 AM | Location : United States







Related Discussions:- Local suffix substitution closure, Assignment Help, Ask Question on Local suffix substitution closure, Get Answer, Expert's Help, Local suffix substitution closure Discussions

Write discussion on Local suffix substitution closure
Your posts are moderated
Related Questions
s->0A0|1B1|BB A->C B->S|A C->S|null find useless symbol?

The Last Stop Boutique is having a five-day sale. Each day, starting on Monday, the price will drop 10% of the previous day’s price. For example, if the original price of a product

design a turing machine that accepts the language which consists of even number of zero''s and even number of one''s?

Suppose A = (Q,Σ, T, q 0 , F) is a DFA and that Q = {q 0 , q 1 , . . . , q n-1 } includes n states. Thinking of the automaton in terms of its transition graph, a string x is recogn

proof ogdens lemma .with example i am not able to undestand the meaning of distinguished position .

Design a turing machine to compute x + y (x,y > 0) with x an y in unary, seperated by a # (descrition and genereal idea is needed ... no need for all TM moves)

Find the Regular Grammar for the following Regular Expression: a(a+b)*(ab*+ba*)b.

write short notes on decidable and solvable problem


s-> AACD A-> aAb/e C->aC/a D-> aDa/bDb/e