Least common denominator using primes, Mathematics

Least Common Denominator Using Primes:

A prime number is a whole number (integer) whose only factors are itself and one. So the first prime numbers are given as follows:

1,   2,   3,   5,   7,   11,   13,   17,   19,   23,   29, . . . .

By dividing by primes, you can search that the primes of 105 are:

105/3 = 35    35/5 = 7 = a prime number, therefore, stop dividing.

The primes of 105 are:  3, 5, 7

A systematic way of searching the prime factors of larger positive integers is described below.  The primes are tried in order, as factors, using each as several times as possible before going on to the further.  The result in this case is:

504      =(2)(252)

=(2)(2)(126)

=(2)(2)(2)(63)

=(2)(2)(2)(3)(21)

=(2)(2)(2)(3)(3)(7)

To add various fractions with different denominators, subsequent these steps:

Step 1:  State denominators in prime factors.

Step 2:  Determine  the  least  general  denominator  by  using  all  of  the  prime numbers  from  the  largest  denominator,  and  then  involve  each  prime number from the other denominators so in which each denominator could be calculated from the list of primes contained in the LCD.

Step 3: Rewrite using the least general denominator.

Step 4: Add the fractions.

Posted Date: 2/9/2013 1:09:59 AM | Location : United States







Related Discussions:- Least common denominator using primes, Assignment Help, Ask Question on Least common denominator using primes, Get Answer, Expert's Help, Least common denominator using primes Discussions

Write discussion on Least common denominator using primes
Your posts are moderated
Related Questions
miaty and yesenia have a group of base ten blocks.Misty has six more than yesnia. Yesenia''s blocks repersent 17 together they have 22 blocks,and the total of blocks repersent 85.

Evaluate following. ∫ 0 ln (1 + π )   e x cos(1-e x )dx Solution The limits are little unusual in this case, however that will happen sometimes therefore don't get

Find out the surface area of the solid acquired by rotating the following parametric curve about the x-axis. x = cos 3 θ y = sin 3 θ  0 ≤ θ ≤ ?/2 Solution We wil

Go back to the complex numbers code in Figures 50 and 51 of your notes. Add code fragments to handle the following: 1. A function for adding two complex numbers given in algeb

THE CURVE C HAS POLAR EQUATION R=[X^1/2][E^X^2/PI]. WHERE X IS GREATER THAN OR EQUAL TO 0 BUT LESS THAN OR EQUAL TO PI. THE AREA OF THE FINITE REGION BOUNDED BY C AND THE LINE X EQ

Evaluating a Function You evaluate a function by "plugging in a number". For example, to evaluate the function f(x) = 3x 2 + x -5 at x = 10, you plug in a 10 everywhere you

Find x and y in each paarallelogram.

hi,i want know about Assignment work..

Mutually Exclusive Events A set of events is said to be mutually exclusive if the occurrence of any one of the events precludes the occurrence of any of the other events for i

why we study integration..?? uses