Inverse functions, Mathematics

Assignment Help:

Inverse Functions : In the last instance from the previous section we looked at the two functions

  f ( x ) = 3x - 2 and g ( x ) = x /3+ 2/3 and saw that

( f o g ) ( x ) = ( g o f ) ( x ) = x

and as noted in that section it means that there is a nice relationship among these two functions.  Let's see what that relationship is.  Assume the following evaluations.

f ( -1) = 3( -1) - 2 = -5

⇒         g ( -5) = -5 /3+ 2/3 = -3/3 = -1

g ( 2) = 2/3 + 2/3 =4/3

⇒         f ( 4 /3) = 3( 4/3 ) - 2 = 4 - 2 = 2

In the first case we plugged x = -1 in f (x) and got a value of -5.  Then we turned around and plugged x = -5 into g (x) and got a value of -1, the number which we started off with.

In the second case we did something same.  Here we plugged x = 2 into g ( x ) and got a value of 4/3, we turned around & plugged this into f ( x ) and got a value of 2, that is again the number that we begun with.

Note that we actually are doing some function composition here. The first case is,

 ( g o f ) ( -1) = g [f ( -1)]= g (-5) =-1

and the second case is,

 ( f o g ) ( 2) = f [g ( 2)] =f(4/3)=2

Note that these both agree with the formula for the compositions which we found in the previous section.  We get back of function evaluation the number which we originally plugged into the composition.

Thus, just what is going on here?  In some of the way we can think of these two functions as undoing what the other did with number.  In the primary case we plugged x = -1 into f ( x ) and then plugged the result from this function evaluation back into g (x ) and in some way g (x ) undid what f ( x ) had done to x = -1 and gave us back the original x which we started with.

Function pairs which exhibit this behavior are called inverse functions. Previous to formally defining inverse functions & the notation which we're going to use for them we have to get a definition out of the way.


Related Discussions:- Inverse functions

Evaluate indefinite integrals, Evaluate following indefinite integrals. ...

Evaluate following indefinite integrals.  (a) ∫ 5t 3 -10t -6 + 4 dt  (b) ∫ dy Solution  (a) ∫ 5t 3 -10t -6 + 4 dt There's not whole lot to do here other than u

Fact of the wronskian method, Given two functions f(x) and g(x) which are d...

Given two functions f(x) and g(x) which are differentiable on some interval I  (1) If W (f,g) (x 0 ) ≠ 0 for some x 0 in I, so f(x) and g(x) are linearly independent on the int

Interval of validity, The interval of validity for an IVP along with initia...

The interval of validity for an IVP along with initial conditions: y(t 0 ) = y 0 or/and y (k) (t 0 ) = y k There is the largest possible interval on that the solution is va

Which of the subsequent numbers will yield a number larger, Which of the su...

Which of the subsequent numbers will yield a number larger than 23.4 while it is multiplied by 23.4? When multiplying through a number less than 1, you get a product in which i

Find ad, A circle is inscribed in a triangle ABC having sides 8cm, 10cm and...

A circle is inscribed in a triangle ABC having sides 8cm, 10cm and 12cm as shown in the figure. Find AD, BE and CF.

Complex number, a ,b,c are complex numbers such that a/1-b=b/1-c=c-1-a=k.fi...

a ,b,c are complex numbers such that a/1-b=b/1-c=c-1-a=k.find the value of k

Sum and difference identities, Q. Sum and Difference Identities? Ans. ...

Q. Sum and Difference Identities? Ans. These six sum and difference identities express trigonometric functions of (u ± v) as functions of u and v alone.

Find the coordinates of the other two vertices, The two opposite vertices o...

The two opposite vertices of a square are (-1, 2) and (3, 2). Find the coordinates of the other two vertices.

Determine that the series is convergent or divergent, Determine or find out...

Determine or find out if the subsequent series is convergent or divergent.  If it converges find out its value. Solution To find out if the series is convergent we fir

Application of derivatives, the base b of a triangle increases at the rate ...

the base b of a triangle increases at the rate of 2cm per second, and height h decreases at the rate of 1/2 cm per second. Find rate of change of its area when the base and height

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd