Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
X and Y are centers of circles of radius 9cm and 2cm and XY = 17cm. Z is the centre of a circle of radius 4 cm, which touches the above circles externally. Given that XZY=90o, write an equation in r and solve it for r.
Ans: Let r be the radius of the third circle APQ
XY = 17cm ⇒ XZ = 9 + r YZ = 2
(r + 9)2 + (r + 2)2 = (1 + r)2
⇒ r2 + 18r + 81 + r2 + 4r + 4 = 289S
⇒ r2 + 11r - 10r = 0 (r + 17) (r - 6) = 0
⇒ r = - 17 (N.P)
r = 6 cm
∴radius = 6cm
For the initial value problem y' + 2y = 2 - e -4t , y(0) = 1 By using Euler's Method along with a step size of h = 0.1 to get approximate values of the solution at t = 0.1, 0
Demerits and merits of the measures of central tendency The arithmetic mean or a.m Merits i. It employs all the observations given ii. This is a very useful
how to change order and variable in multiple integral
time=2.82/4000
two circle of radius of 2cm &3cm &diameter of 8cm dram common tangent
into how many smaller part is each centimeter divided
how i become an assignment helper?n how i get order from students?what should i do
If the expression 9y - 5 represents a certain number, which of the following could NOT be the translation? a. five less than nine times y b. five less than the sum of 9 and y c
regression line drawn as Y=C+1075x, when x was 2, and y was 239, given that y intercept was 11. calculate the residual
A drug has a decay rate of k = - ¼ ln(¾) / hr. How soon after an initial dose of 1600 mg will the drug reach its minimum therapeutic value of 900 mg in the body?
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd