Indeterminate forms, Mathematics

Assignment Help:

Indeterminate forms

Limits we specified methods for dealing with the following limits.

967_limit41.png

In the first limit if we plugged in x = 4 we would get 0/0 & in the second limit if we "plugged" within infinity we would get ∞ /-∞ (recall that as x goes to infinity polynomial will act in the similar fashion that its largest power behaves). Both are called indeterminate forms.  In both cases there are competing interests or rules & it's not clear which will win out.

In the case of 0/0 typically we think of a fraction which has a numerator of zero as being zero. Though, we also tend to think of fractions wherein the denominator will zero as infinity or may not exist at all.  Similarly, we tend to think of a fraction wherein the numerator & denominator are the similar as one.  Therefore, which will win out?  Or will neither win out and they all will "cancel out" and the limit will attain some other value?

In the case of ∞ /-∞ we contain a similar set of problems.  If the numerator of fraction will be infinity we tend to think of the whole fraction will be infinity.  Also if the denominator will be infinity we tend to think of the fraction will be zero. We also have the case of a fraction wherein the numerator & denominator are the similar (ignoring the minus sign) and thus we might get -1.  Again, it's not apparent which of these will win out, if any will win out.

Along the second limit there is the further problem which infinity isn't actually a number and therefore we actually shouldn't even treat it as a number.  Most of time it simply won't behave as we would expect it to if it was a number.

It is the problem with indeterminate forms.  It's just not apparent what is happening in the limit. There are other kinds of indeterminate forms as well. Some other kinds are following,

(0) ( ± ∞ )         1       00                 ∞0            ∞ - ∞

2118_limit42.png

These all contain competing interests or rules which tell us what have to happen and it's just not apparent which, if any, of the interests or rules will win out.

For the two limits above we work on them as follows.

1234_limit43.png

In the first case simply we factored, canceled & took the limit and in the second case we factored out an x2 from both the numerator & the denominator and took the limit. Notice that none of the competing interests or rules in these instance won out! That is frequently the case.

Thus we can deal with some of these.  Though what about the following two limits.

29_limit44.png

First is a 0/0 indeterminate form, however we can't factor this one.  The second is an  ∞ /∞   indeterminate form, however we can't just factor an x2 out of the numerator.


Related Discussions:- Indeterminate forms

Prove that ac2 = ap2 + 2(1+2)bp2, ABC is a right-angled isosceles triangle,...

ABC is a right-angled isosceles triangle, right-angled at B. AP, the bisector of ∠BAC, intersects BC at P. Prove that AC 2 = AP 2 + 2(1+√2)BP 2 Ans:    AC = √2AB (Sinc

Find out general formula for tangent vector and unit vector, Find out the g...

Find out the general formula for the tangent vector and unit tangent vector to the curve specified by r → (t) = t 2 i → + 2 sin t j → + 2 cos t k → . Solution First,

Determine rank correlation coefficient , Determine Rank Correlation Coe...

Determine Rank Correlation Coefficient A group of 8 accountancy students are tested in Quantitative Techniques and Law II.  Their rankings in the two tests were as:

Calenders, on which date of the week does 4th december 2001 falls?

on which date of the week does 4th december 2001 falls?

Dividing fractions by fractions with drawing.., how do I divide a fraction ...

how do I divide a fraction by a fraction by drawing a picture

In sequence to remain the pole perpendicular to the ground, A cable is atta...

A cable is attached to a pole 24 ft above ground and fastened to a stake 10 ft from the base of the pole. In sequence to remain the pole perpendicular to the ground, how long is th

#title LOGIC, HOW MANY ZERO ARE THERE AT THE END OF 200

HOW MANY ZERO ARE THERE AT THE END OF 200

Finding the side of a triangle only using equations, In triangle DEF, angle...

In triangle DEF, angle E is congruent to angle F. If side DE = 3x-6, Side EF = x+2 and Side DF = 18-5x. Find the length of side DE

Obligatory application and interpretation problem, Obligatory application/i...

Obligatory application/interpretation problem : Next, we need to do our obligatory application/interpretation problem so we don't forget about them. Example : Assume that the

Test of hypothesis about the population mean, Test of hypothesis about the ...

Test of hypothesis about the population mean When the population standard deviation (S) is identified then the t statistic is defined as             t = ¦(x¯ - µ)/ S x¯ ¦

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd