Cross product - vector, Mathematics

Assignment Help:

Cross Product

In this last section we will look at the cross product of two vectors.  We must note that the cross product needs both of the vectors to be three dimensional (3D) vectors.  

 As well, before getting into how to calculate these we should point out a major variation in between dot products and cross products. The product of a dot product is a number and the result of a cross product is a vector!  Be cautious not to confuse the two.

Thus, let's begin with the two vectors a = (a1, a2, a3) illustrated by the formula, and b = (b1, b2 , b3) then the cross product is illustrated by formula

a * b = (a2b3 - a3b2, a3b1 - a1b3, a1b2 - a2b1)

This is not a simple formula to remember.  There are two methods to derive this formula.  Both of them make use of the fact that the cross product is actually the determinant of a 3x3 matrix.  If you don't be familiar with what this is that is don't worry about it.  You don't require to know anything about matrices or determinants to make use of either of the methods.  The notation for the determinant is like this,

473_Cross Product - Vector 3.png

The first row in the above determinant is the standard basis vectors and should appear in the order given here.  The 2nd row is the components of a? and the third row is the components of b.  Now, let's take a look at the dissimilar methods for getting the formula.

 The first technique uses the Method of Cofactors.  If you do not know the method or technique of cofactors that is fine, the result is all that we want.  Formula is given below:

103_Cross Product - Vector 2.png

This formula is not as hard to remember as it might at first come out to be.  First, the terms change in sign and notice that the 2x2 is missing the column below the standard basis vector that multiplies it also the row of standard basis vectors.

The second method is little easier; though, many textbooks don't cover this method as it will only work on 3x3 determinants.  This technique says to take the determinant as listed above and after that copy the first two columns onto the end as displayed below.

2002_Cross Product - Vector 1.png

We now have three diagonals which move from left to right and three diagonals which move from right to left.  We multiply all along each diagonal and add those that move from left to right and subtract those which move from right to left.


Related Discussions:- Cross product - vector

The dimensions are 2x and 4x what is area of sara''s bedroom, Sara's bedroo...

Sara's bedroom is within the shape of a rectangle. The dimensions are 2x and 4x + 5. What is the area of Sara's bedroom? Because the area of a rectangle is A = length times wid

Partial fraction decomposition - integration techniques, Partial Fraction D...

Partial Fraction Decomposition The procedure of taking a rational expression and splitting down it into simpler rational expressions which we can add or subtract to get the ori

.., rectangles 7cm by 4cm

rectangles 7cm by 4cm

Tower of hanoi, how to create an activity of tower of hanoi

how to create an activity of tower of hanoi

Equation of line which perpendicular to the given line, Perpendicular to th...

Perpendicular to the line given by 10 y + 3x= -2 For this part we desire the line to be perpendicular to 10 y + 3x= -2 & so we know we can determine the new slope as follows,

Calculate the probability, Coal is carried from a rrrine in West Virginia t...

Coal is carried from a rrrine in West Virginia to a power plant in New York in hopper cars on a long train. The automatic hopper car loader is set to put 36 tons of coal in each ca

Triangles, if triangle abc is similar to def and ab/de=3/4 find the ratio a...

if triangle abc is similar to def and ab/de=3/4 find the ratio af their perimeter and area

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd