Cross product - vector, Mathematics

Assignment Help:

Cross Product

In this last section we will look at the cross product of two vectors.  We must note that the cross product needs both of the vectors to be three dimensional (3D) vectors.  

 As well, before getting into how to calculate these we should point out a major variation in between dot products and cross products. The product of a dot product is a number and the result of a cross product is a vector!  Be cautious not to confuse the two.

Thus, let's begin with the two vectors a = (a1, a2, a3) illustrated by the formula, and b = (b1, b2 , b3) then the cross product is illustrated by formula

a * b = (a2b3 - a3b2, a3b1 - a1b3, a1b2 - a2b1)

This is not a simple formula to remember.  There are two methods to derive this formula.  Both of them make use of the fact that the cross product is actually the determinant of a 3x3 matrix.  If you don't be familiar with what this is that is don't worry about it.  You don't require to know anything about matrices or determinants to make use of either of the methods.  The notation for the determinant is like this,

473_Cross Product - Vector 3.png

The first row in the above determinant is the standard basis vectors and should appear in the order given here.  The 2nd row is the components of a? and the third row is the components of b.  Now, let's take a look at the dissimilar methods for getting the formula.

 The first technique uses the Method of Cofactors.  If you do not know the method or technique of cofactors that is fine, the result is all that we want.  Formula is given below:

103_Cross Product - Vector 2.png

This formula is not as hard to remember as it might at first come out to be.  First, the terms change in sign and notice that the 2x2 is missing the column below the standard basis vector that multiplies it also the row of standard basis vectors.

The second method is little easier; though, many textbooks don't cover this method as it will only work on 3x3 determinants.  This technique says to take the determinant as listed above and after that copy the first two columns onto the end as displayed below.

2002_Cross Product - Vector 1.png

We now have three diagonals which move from left to right and three diagonals which move from right to left.  We multiply all along each diagonal and add those that move from left to right and subtract those which move from right to left.


Related Discussions:- Cross product - vector

Spherical coordinates - three dimensional space, Spherical Coordinates - Th...

Spherical Coordinates - Three Dimensional Space In this part we will introduce spherical coordinates. Spherical coordinates which can take a little getting employed to.  It's

Actual implicit solution, y 2 = t 2 - 3 is the actual implicit solution t...

y 2 = t 2 - 3 is the actual implicit solution to y'= t/y, y(2) = -1. At such point I will ask that you trust me that it is actually a solution to the differential equation. You w

Product moment coefficient, Product Moment Coefficient This gives an i...

Product Moment Coefficient This gives an indication of the strength of the linear relationship among two variables. Note that this formula can be rearranged to have di

Find out the length of hamiltonian path, Find out the length of Hamiltonian...

Find out the length of Hamiltonian Path in a connected graph of n vertices. Ans: The length of Hamiltonian Path in a connected graph of n vertices is n-1.

Matrix addition and subtraction, What is Matrix addition and subtraction? I...

What is Matrix addition and subtraction? Illustrate the procedure of Matrix addition and subtraction.

Minimizing the sum of two distances, The value of y that minimizes the sum ...

The value of y that minimizes the sum of the two distances from (3,5) to (1,y) and from (1,y) to (4,9) can be written as a/b where a and b are coprime positive integers. Find a+b.

Statistics, the median of a continuous frequency distribution is 21.if each...

the median of a continuous frequency distribution is 21.if each observation is increased by 5. find the new median

Show that the vector is in the perfect matching polytope, 1.  Let G = (V,E)...

1.  Let G = (V,E) be a graph for which all nodes have degree 5 and where G is 5-edge is connected. a) Show that the vector x which is indexed by the edges E and for which x e =

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd