Important points about the curve segment, Computer Graphics

Assignment Help:

Important Points about the Curve segment - properties of bezier curves

Note: if P (u) → = Bezier curve of sequence n and Q (u) → Bezier curve of sequence m.

After that Continuities in between P(u) and Q(u) are as:

1)      Positional continuity of 2 curves

892_Important Points about the Curve Segment.png

That is pn = q0

2)       C1 continuity of 2 curve P (u) and Q (u) as that point pn - 1, pn on curve P(u) and q0, q1 points upon curve Q(u) are collinear that is:

n( pn  - pn-1 ) = m(q1 - q0 )

n q1  = q0  +( pn  - pn -1 ).(n/m)

 ⇒ (d p/du)u=1         =  (d q/dv)v=0

G(1)  continuity of two curves P(u) and Q(u) at the joining that are the end of P(u) along with the beginning of q(u) as:

pn  = q0n( pn  - pn -1 ) = kn(q1  - q0 ),

Here k is a constant and k > 0

⇒ pn -1 , p­  = q0 , q1  are collinear

3)  c2 continuity is:

a)   C(1) continuity

b)   m (m - 1) (q0 - 2q1 + q2)

= n (n - 1) (pn - 2pn - 1 + pn - 2)

That points are as: pn - 2, pn - 1, pn of P(u) and points q0 , q1, q2 of Q(u) should  be collinear further we can verify whether both second and first order derivatives of two curve sections are similar at the intersection or not  that is:

(d p)/( d u) u=1  =   (d q) /(d v )v=0

And (d2 p)/( d u2) u=1  =   (d2 q) /(d v2 )v=0

Whether they are similar we can as we have C2 continuity   

 Note: as the same we can explain higher order parametric continuities


Related Discussions:- Important points about the curve segment

Tagged image file format, TIFF: It is Tagged Image file format which is us...

TIFF: It is Tagged Image file format which is used mainly for exchanging documents among various applications and computers. This was primarily designed to turn into the standa

Polygon or area clipping algorithm, Polygon or Area Clipping Algorithm - Su...

Polygon or Area Clipping Algorithm - Sutherland-Hodgman Algorithm There are different algorithms as Liang-Barsky, Line clipping, Weiler-Atherton Polygon Clipping,

Constant intensity shading or flat shading, Constant intensity shading OR F...

Constant intensity shading OR Flat shading  In this technique particular intensity is calculated for each polygon surface that is all points that lie upon the surface of the

Important notes for negative accelerations, Important Notes for Negative Ac...

Important Notes for Negative Accelerations Note : Having projections of points on curve, above Y axis we will obtain a pattern similar to figure 8 that is needed to produce ne

Input and output devices - computer aided design, Input and Output Devices ...

Input and Output Devices - computer aided design Output and Input devices are quite significant for any software since an unsuitable selection of the concerned hardware may tu

Explain three dimensional transformations, Explain Three Dimensional Transf...

Explain Three Dimensional Transformations A 3D geometric transformation is utilized extensively in object modelling and rendering. 2D transformations are naturally extended to

Cohen sutherland, explain cohen sutherland line clipping algorithm

explain cohen sutherland line clipping algorithm

How to identify window area - raster graphics and clipping, A convex polygo...

A convex polygonal region having n- vertices {P 0 , P 1 , P 2 ..., P n - 1 , P n , P 0 } or lattice points to be identified by the user includes the convex window area. To be exact

Ray tracing algorithm - recursive, Ray Tracing Algorithm - Recursive ...

Ray Tracing Algorithm - Recursive Frequently, the basic ray tracing algorithm is termed as a "recursive" acquiring an outcome wherein a given process repeats itself an arbitr

Vertices of bezier curve find out 3 points on bezier curve, Specified p 0 ...

Specified p 0 (1, 1): p 1 (2, 3); p 2 (4, 3); p 3 (3, 1) as vertices of Bezier curve find out 3 points on Bezier curve? Solution : We consider Cubic Bezier curve as: P (

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd