Important points about the curve segment, Computer Graphics

Assignment Help:

Important Points about the Curve segment - properties of bezier curves

Note: if P (u) → = Bezier curve of sequence n and Q (u) → Bezier curve of sequence m.

After that Continuities in between P(u) and Q(u) are as:

1)      Positional continuity of 2 curves

892_Important Points about the Curve Segment.png

That is pn = q0

2)       C1 continuity of 2 curve P (u) and Q (u) as that point pn - 1, pn on curve P(u) and q0, q1 points upon curve Q(u) are collinear that is:

n( pn  - pn-1 ) = m(q1 - q0 )

n q1  = q0  +( pn  - pn -1 ).(n/m)

 ⇒ (d p/du)u=1         =  (d q/dv)v=0

G(1)  continuity of two curves P(u) and Q(u) at the joining that are the end of P(u) along with the beginning of q(u) as:

pn  = q0n( pn  - pn -1 ) = kn(q1  - q0 ),

Here k is a constant and k > 0

⇒ pn -1 , p­  = q0 , q1  are collinear

3)  c2 continuity is:

a)   C(1) continuity

b)   m (m - 1) (q0 - 2q1 + q2)

= n (n - 1) (pn - 2pn - 1 + pn - 2)

That points are as: pn - 2, pn - 1, pn of P(u) and points q0 , q1, q2 of Q(u) should  be collinear further we can verify whether both second and first order derivatives of two curve sections are similar at the intersection or not  that is:

(d p)/( d u) u=1  =   (d q) /(d v )v=0

And (d2 p)/( d u2) u=1  =   (d2 q) /(d v2 )v=0

Whether they are similar we can as we have C2 continuity   

 Note: as the same we can explain higher order parametric continuities


Related Discussions:- Important points about the curve segment

Normalization transformation, Find the normalization transformation N, whic...

Find the normalization transformation N, which uses the rectangle W(1, 1); X(5, 3); Y(4, 5) and Z(0, 3) as a window and the normalized deice screen as viewpoint.

Jas file formats, JAS: The JAS file formats were implemented to form the s...

JAS: The JAS file formats were implemented to form the smallest possible picture files for 24bits per pixel image and 8 bit per pixel gray scaled pictures. This uses a discrete co

Reflecting the ball off of a polyline, To reflect the ball off of the polyl...

To reflect the ball off of the polyline, we need to re?ect it off of the segment that had the minimum thit. But the reflection computation depends only on t hit , n, P and v, so th

Distinguish between convex and concave polygons, Distinguish between convex...

Distinguish between convex and concave polygons? If the line joining any two points in the polygon lies totally inside the polygon then, they are called as convex polygons. If

.python programming, Write a function that computes the area of a triangle ...

Write a function that computes the area of a triangle given the length of its three sides as parameters (see Programming Exercise 9 from Chapter 3). Use your function to augment tr

Bezier curves, find out points to the given control points

find out points to the given control points

Simulation-applications for computer animation, Simulation: There are seve...

Simulation: There are several things, places and events people cannot witness in first person. There are a lot of causes for this. Several may happen too rapidly, several may be t

Determine the perspective transformation matrix, Determine the perspective ...

Determine the perspective transformation matrix upon to z = 5 plane, when the center of projection is at origin. Solution. As z = 5 is parallel to z = 0 plane, the normal is s

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd