Important points about the curve segment, Computer Graphics

Assignment Help:

Important Points about the Curve segment - properties of bezier curves

Note: if P (u) → = Bezier curve of sequence n and Q (u) → Bezier curve of sequence m.

After that Continuities in between P(u) and Q(u) are as:

1)      Positional continuity of 2 curves

892_Important Points about the Curve Segment.png

That is pn = q0

2)       C1 continuity of 2 curve P (u) and Q (u) as that point pn - 1, pn on curve P(u) and q0, q1 points upon curve Q(u) are collinear that is:

n( pn  - pn-1 ) = m(q1 - q0 )

n q1  = q0  +( pn  - pn -1 ).(n/m)

 ⇒ (d p/du)u=1         =  (d q/dv)v=0

G(1)  continuity of two curves P(u) and Q(u) at the joining that are the end of P(u) along with the beginning of q(u) as:

pn  = q0n( pn  - pn -1 ) = kn(q1  - q0 ),

Here k is a constant and k > 0

⇒ pn -1 , p­  = q0 , q1  are collinear

3)  c2 continuity is:

a)   C(1) continuity

b)   m (m - 1) (q0 - 2q1 + q2)

= n (n - 1) (pn - 2pn - 1 + pn - 2)

That points are as: pn - 2, pn - 1, pn of P(u) and points q0 , q1, q2 of Q(u) should  be collinear further we can verify whether both second and first order derivatives of two curve sections are similar at the intersection or not  that is:

(d p)/( d u) u=1  =   (d q) /(d v )v=0

And (d2 p)/( d u2) u=1  =   (d2 q) /(d v2 )v=0

Whether they are similar we can as we have C2 continuity   

 Note: as the same we can explain higher order parametric continuities


Related Discussions:- Important points about the curve segment

Anti aliasing - modeling and rendering, Anti Aliasing - Modeling and Render...

Anti Aliasing - Modeling and Rendering It is a method for enhancing the realism of an image through eliminating the jagged edges from it. Such jagged edges or "jaggies", appe

Differentiate between spatial and temporal interpolations, Question 1: ...

Question 1: (a) Define what you understand by the following terms: i) Pixel ii) Pixel Aspect Ratio iii) Frame rates. iv) Animation In each of the above, use diagr

Single point perspective transformation, Single Point Perspective Transform...

Single Point Perspective Transformation - Viewing Transformations In order to derive the particular point perspective transformations beside the x and y-axes, we construct fi

Transformation for 3-d shearing, 2-dimensional xy-shearing transformation, ...

2-dimensional xy-shearing transformation, as explained in equation (19), can also be simply extended to 3-dimensional case. All coordinates are translated as a function of displace

What is transformation, What is Transformation?  Transformation is the ...

What is Transformation?  Transformation is the method of introducing changes in the shape size and orientation of the object using scaling rotation reflection shearing & transl

Vertices of bezier curve find out 3 points on bezier curve, Specified p 0 ...

Specified p 0 (1, 1): p 1 (2, 3); p 2 (4, 3); p 3 (3, 1) as vertices of Bezier curve find out 3 points on Bezier curve? Solution : We consider Cubic Bezier curve as: P (

Combination of positive and negative accelerations, Combination of Positive...

Combination of Positive and Negative Accelerations Actually, it is not that a body once decelerated or accelerated will remain so, although the motion may include both speed-up

Number system, Perform the indicated base conversions 548 to base 5

Perform the indicated base conversions 548 to base 5

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd