Graphical method- minimization example, Operation Research

Minimization

Example 

A farmer is advised to utilize at least 900 kg of mineral A and 1200 kg of mineral B to increase the productivity of crops in his fields. Two fertilizers, F1 and F2 are available at a cost of Rs.60 and Rs.80 per bag. If one bag of F1 contains 20 kg of mineral A and 40 kg of mineral B, and one bag of F2 contains 30 kg each of mineral A and B, then how many bags of F1 and F2 should the farmers use to fulfill the requirement of both the types of minerals at an optimum low cost?

Let us formulate this problem in terms of mathematical equations or inequalities. As the farmer has to decide on the number of bags of fertilizers F1 and F2, the variables may be defined as:

         q1 = number of bags of F1

         q2 = number of bags of F2

The objective function is minimization, that is, cost reduction. Here the total cost is 60q1 + 80q2. The restriction is that at least 900 kg of mineral A and 1200 kg of mineral B is required. Hence we get the following constraints:

20q1 + 30q2 > 900 - requirement for mineral A

40q1 + 30q2 > 1200 - requirement for mineral B

As we cannot have negative quantities, q1 > 0 and q2 > 0,

the problem may be represented as

Minimize Z : 60q1 + 80q2                                              .....(1)

Subject to constraints:                           

20q1 + 30q2 > 900

40q1 + 30q2  > 1200                                                     .....(2)

q1 >  0, q2     >  0                                                        .....(3)

We have to find the values of q1 and q2 which will satisfy constraints (2) and (3) and at the same time, minimize function (1).

After formulating the problem, each inequality is converted to an equality. Then any arbitrary value (say, 0) is assigned to one variable in the equation and the corresponding value of the other variable is found. Consider the constraints which are written as equalities: 20q1 + 30q2 = 900. If q1 = 0, we get q2 = 30 and if q2 = 0, we have q1 = 45. These two points are now plotted on a graph with q1 on X-axis and q2 on  Y-axis.  Joining the two points (0, 30) and (45, 0), we get a straight line corresponding to the above equation.

Consider the equation: 40q1 + 30q2 = 1200. If we take q1 = 0, then q2 = 40, and if q2 = 0, then q1 = 30. Joining the two points (0,40) and (30,0), we get another straight line corresponding to the above equation. The next step is to graph the feasible region which satisfies all the constraints. For this, we should take the co-ordinates of the point of origin (0,0) and substitute in each inequality. If the statement is found to be true, shade the region towards the origin or else shade the region away from the origin.

Take the constraint 20q1 + 30q2 > 900. If we substitute (0,0), we get (20 x 0) + (30 x 0) a ≥ 900. Since the statement is not true, we shade the region away from the origin. Similarly, for constraint 40q1 + 30q2 > 1200, we shade the region away from the origin.

Figure 

2015_minimization.png

The region which  satisfies all the constraints is the feasible region. Here, the region above ABC (that is, the intersection of all shaded regions) is the feasible region. Now we should compute the co-ordinates of the corner points B, A and C of the feasible region. We know that the co-ordinates of B are (0,40) and that of C are (45,0).  For point A, which is an intersection of the two straight lines of equations 20q1 + 30q2 = 900 and 40q1 + 30q2 = 1200, we find the co-ordinates by solving the simultaneous equations

         20q1 + 30q2 = 900            (1)

         40q1 + 30q2 = 1200          (2)

Subtracting equation (1) from (2) we get 20q1 = 300. Therefore, q1 = 15 and q2 = 20.  Hence the co-ordinates of A are (15,20).

The next step is to substitute the co-ordinates of the corner points of the feasible region in the objective function and choose the optimal solution (that is, the values that give the lowest cost).

We thus get the following volumes:

At     A (15, 20), Z = 15 x 60 + 20 x 80  = Rs.2,500,

         B (0, 40), Z   = 0 x 60 + 40 x 80     = Rs.3,200 and

         C (45, 0), Z   = 45 x 60 + 0 x 80     = Rs.2,700

From the above calculations, we find that Z assumes a minimum value at A (15,20).  Therefore, the optimal value of q1 = 15 and q2 = 20. Hence the farmer should buy 15 bags of fertilizer F1 and 20 of fertilizer F2 in order to meet the optimal requirements.

Posted Date: 9/13/2012 8:31:18 AM | Location : United States







Related Discussions:- Graphical method- minimization example, Assignment Help, Ask Question on Graphical method- minimization example, Get Answer, Expert's Help, Graphical method- minimization example Discussions

Write discussion on Graphical method- minimization example
Your posts are moderated
Related Questions
RANK SUM TEST THE  MANN WHITNEY U - TEST Mann  Whitney u test is an alternative to the  samples  test. This  test is based  on the ranks  of the  observation of two samples pu

These models deal with the selection of an optimal course of action given the possible pay offs and their associated probability of occurrence. These models are broadly

Z-Test Prof. Fisher has  given a method  of testing the significance of the correlation coefficient in small  samples. According  to this method the  coefficient of correlation

A PAPER MILL PRODUCES TWO GRADES OF PAPER VIZ., X AND Y. BECAUSE OF RAW MATERIAL RESTRICTIONS, IT CANNOT PRODUCE MORE THAN 400 TONS OF GRADE X PAPER AND 300 TONS OF GRADE Y PAPER I

A certain type of machine breaks down at an average rate of 5/hour. the break down is in accordance with Poisson process.cost of idle machine hour is $15/hour. 2 repairmen Peter an

Secondary Periodicals: Secondary Periodicals Secondary periodicals are  abstracting and indexing periodicals.  They are also called documentation periodicals. They are a  syst

Solve the following Linear Programming Problem using Simple method. Maximize Z= 3x1 + 2X2 Subject to the constraints: X1+ X2 = 4 X1 - X2 = 2 X1, X2 = 0

LCD Projectors  LCD projectors  are several  steps  ahead of conventional OHPs. These  projectors  are more  compact  and more  powerful  and can  be directly  linked to a

Write a note on tracing a closed loop. What are the characteristic features of a closed loop?

Question 1 Explain Pre-Store opening activities and State at least 10 pre-store opening activities that should be ideally carried out in a retail store? Question 2 What ar