Gauss-jordan, MATLAB in Engineering

Gauss-Jordan:

The Gauss-Jordan elimination technique begins in similar way which the Gauss elimination technique does, but then rather than of back-substitution, the elimination carries on. The Gauss-Jordan technique consists of:

  •  Generating the augmented matrix [A b]
  •  Forward elimination by applying the EROs to obtain an upper triangular form
  •  Back elimination to the diagonal form that yields the solution.

 

 

Posted Date: 10/22/2012 4:28:05 AM | Location : United States







Related Discussions:- Gauss-jordan, Assignment Help, Ask Question on Gauss-jordan, Get Answer, Expert's Help, Gauss-jordan Discussions

Write discussion on Gauss-jordan
Your posts are moderated
Related Questions
str2num function - String: The function str2num does the opposite; it takes the string in which a number is stored and converts it to the type double: >> num = str2num('123.

Example to change the line width from the default: For illustration, to change the line width from the default of 0.5 to 1.5: >> set(hl,'LineWidth',1.5) As long as the

Illustration of Subfunctions: This is an illustration of running this program: >> rectarea Please enter the length: 6 Please enter the width: 3 For a rectan

Execute a exponential function program: Running the script will take up the menu as shown in the figure: Then, what happens will totally depend on which button(s) the

printrectarea function: function call: printrectarea(length, width) function header: function printrectarea(len, wid)   In the function call, there are two argume

Example of Menu driven modular program: As an illustration of such a menu-driven program, we will write a program to discover the constant e. The constant e, known as the n

Logical scalar values: The MATLAB also has or and and operators which work element wise for the matrices: These operators will compare any of the two vectors or matric

Illustration of gauss-jordan elimination: An illustration of interchanging rows would be r1 ¬→ r3, that would results: Now, beginning with this matrix, an illustration of sc

Illustration of Matrix solutions: For illustration, consider the three equations below with 3unknowns x 1 ,x 2 , and x 3 : We can write this in the form Ax = b here A

Illustration of finding a sting: Let's enlarge this, and write a script which creates a vector of strings which are phrases. The outcome is not suppressed so that the string