Functions of several variables - three dimensional space, Mathematics

Assignment Help:

Functions of Several Variables - Three Dimensional Space

In this part we want to go over a few of the basic ideas about functions of much more than one variable.

Very first, keep in mind that graphs of functions of two variables, z = f (x, y) are surfaces in three dimensional (3D) space. For instance here is the graph of z = 2x2 + 2y2 -4.

1143_Functions of Several Variables - Three Dimensional Space 1.png

This is an elliptic parabaloid and is an instance of a quadric surface. We saw so many of these in the earlier section. We will be seeing quadric surfaces quite regularly later.

Other common graph that we will be seeing quite a bit in this course is the graph of a plane.  We comprise a convention for graphing planes which will make them a slightly easier to graph and hopefully visualize.

Remind that the equation of a plane is illustrated by

ax + by + cz = d

or if we solve this equation for z we can write it in terms of function notation. This provides,

f (x, y) = Ax + By + D

To graph a plane we will usually find the intersection points along with the three axes and then graph the triangle which connects those three points. This triangle will be a part of the plane and will provide us a fairly decent thought on what the plane itself should act like.  For instance let's graph the plane illustrated by,

f (x, y) = 12 - 3x - 4 y

For the aim of graphing this it would possibly be easier to write this as,

 z = 12 - 3x - 4 y                                ⇒         3x + 4 y + z = 12

Here now, each of the intersection points along with the three main coordinate axes is described by the fact that two of the coordinates are zero.  Example for this, the intersection with the z-axis is illustrated by x = y = 0.  Thus, the three intersection points are,

x - axis : (4, 0, 0)

y - axis : (0, 3, 0)

z - axis : (0, 0,12)

Below is the graph of the plane.

69_Functions of Several Variables - Three Dimensional Space 2.png

Now here, to extend this out, graphs of functions of the type w = f (x, y, z) would be four dimensional surfaces.  Actually we cannot graph them, although it does not hurt to point this out. We next wish to talk about the domains of functions of much more than one variable.  Remind that domains of functions of a single variable, y = f (x), contained all the values of x that we could plug into the function and get back a real number. At present, if we think about it, the meaning of this is that the domain of a function of a single variable is an interval (or intervals) of values from the number line or one dimensional space.

The domain of functions of two variables that are, z = f (x, y), are regions from two dimensional space and contain all the coordinate pairs, (x, y) , that we could plug into the function and obtain back a real number.


Related Discussions:- Functions of several variables - three dimensional space

Lower than average, A local police precinct has seen a recent enhance in th...

A local police precinct has seen a recent enhance in the number of complaints filed regarding how officers are interacting with the public. Before addressing the issue, the command

Converting, I need help converting my project fractions to the number 1.

I need help converting my project fractions to the number 1.

Find the second derivative of the equation, Find the second derivative of t...

Find the second derivative of the below given equation Y= e x cosx

Shiites muhammad''s flight from mecca to medina, The first year of the Isla...

The first year of the Islamic calendar marks the following event: The birth of Muhammad The Qu'ran is assembled into a single sacred text The division of the Sunnis and the Shiites

Polynomials in two variables, Polynomials in two variables Let's take a...

Polynomials in two variables Let's take a look at polynomials in two variables.  Polynomials in two variables are algebraic expressions containing terms in the form ax n y m

Some general facts about lines, First, larger the number (ignoring any minu...

First, larger the number (ignoring any minus signs) the steeper the line.  Thus, we can use the slope to tell us something regarding just how steep a line is. Next, if the slope

Operations with rational numbers, larry spends 3/4 hours twice a day walkin...

larry spends 3/4 hours twice a day walking and playing with his dog. He spends 1/6 hours twice a day feeding his dog. how much time does larry spend on his dog each day?

Trigonometry, explain the formular for finding trigonometry

explain the formular for finding trigonometry

Determine the area of the book jacket, A publishing company is creating a b...

A publishing company is creating a book jacket for a newly published textbook. Determine the area of the book jacket, given that the front cover is 8 in wide by 11 in high, the bin

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd