Functions of several variables - three dimensional space, Mathematics

Assignment Help:

Functions of Several Variables - Three Dimensional Space

In this part we want to go over a few of the basic ideas about functions of much more than one variable.

Very first, keep in mind that graphs of functions of two variables, z = f (x, y) are surfaces in three dimensional (3D) space. For instance here is the graph of z = 2x2 + 2y2 -4.

1143_Functions of Several Variables - Three Dimensional Space 1.png

This is an elliptic parabaloid and is an instance of a quadric surface. We saw so many of these in the earlier section. We will be seeing quadric surfaces quite regularly later.

Other common graph that we will be seeing quite a bit in this course is the graph of a plane.  We comprise a convention for graphing planes which will make them a slightly easier to graph and hopefully visualize.

Remind that the equation of a plane is illustrated by

ax + by + cz = d

or if we solve this equation for z we can write it in terms of function notation. This provides,

f (x, y) = Ax + By + D

To graph a plane we will usually find the intersection points along with the three axes and then graph the triangle which connects those three points. This triangle will be a part of the plane and will provide us a fairly decent thought on what the plane itself should act like.  For instance let's graph the plane illustrated by,

f (x, y) = 12 - 3x - 4 y

For the aim of graphing this it would possibly be easier to write this as,

 z = 12 - 3x - 4 y                                ⇒         3x + 4 y + z = 12

Here now, each of the intersection points along with the three main coordinate axes is described by the fact that two of the coordinates are zero.  Example for this, the intersection with the z-axis is illustrated by x = y = 0.  Thus, the three intersection points are,

x - axis : (4, 0, 0)

y - axis : (0, 3, 0)

z - axis : (0, 0,12)

Below is the graph of the plane.

69_Functions of Several Variables - Three Dimensional Space 2.png

Now here, to extend this out, graphs of functions of the type w = f (x, y, z) would be four dimensional surfaces.  Actually we cannot graph them, although it does not hurt to point this out. We next wish to talk about the domains of functions of much more than one variable.  Remind that domains of functions of a single variable, y = f (x), contained all the values of x that we could plug into the function and get back a real number. At present, if we think about it, the meaning of this is that the domain of a function of a single variable is an interval (or intervals) of values from the number line or one dimensional space.

The domain of functions of two variables that are, z = f (x, y), are regions from two dimensional space and contain all the coordinate pairs, (x, y) , that we could plug into the function and obtain back a real number.


Related Discussions:- Functions of several variables - three dimensional space

Market, what is market,what is marketing

what is market,what is marketing

Properties for exponents, The next thing that we must acknowledge is that a...

The next thing that we must acknowledge is that all of the properties for exponents . This includes the more general rational exponent that we haven't looked at yet. Now the pr

Random variable, RANDOM VARIABLE A variable which assumes differ...

RANDOM VARIABLE A variable which assumes different numerical values as a result of random experiments or random occurrences is known as a random variable. The rainfal

Estimation of difference among two means-illustration, A comparison of the ...

A comparison of the wearing out quality of two types of tyres was obtained by road testing. Samples of 100 tyres were collected. The miles traveled until wear out were recorded and

Example on eulers method, For the initial value problem y' + 2y = 2 - e ...

For the initial value problem y' + 2y = 2 - e -4t , y(0) = 1 By using Euler's Method along with a step size of h = 0.1 to get approximate values of the solution at t = 0.1, 0

Detremine the surface area to the nearest inch, If a tabletop has a diamete...

If a tabletop has a diameter of 42 in, Detremine the surface area to the nearest inch? (π = 3.14) a. 1,384 in 2 b. 1,319 in 2 c. 1,385 in 2 d. 5,539 in 2 c. Th

Congruences, Suppose m be a positive integer, then the two integer a and b ...

Suppose m be a positive integer, then the two integer a and b called congurent modulo m ' if a - b is divisible by m i.e.  a - b = m where is an positive integer. The congru

Find the probability , 1.  What is the probability that the two beverages w...

1.  What is the probability that the two beverages will be of the same kind? 2.  What is the probability that the two beverages will be different? 3.  What is the probability

What is stem-and-leaf plots, Q. What is Stem-and-Leaf Plots? Ans. ...

Q. What is Stem-and-Leaf Plots? Ans. A stem-and-leaf plot is a table that provides a quick way to arrange a set of data and view its shape, or distribution. Each data val

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd