Functions , Mathematics

Assignment Help:

For the layman, a "function" indicates a relationship among objects. A function provides a model to describe a system. Economists refer to demand functions which refer to the sales volume of an item as a function of the item's price. Similarily, economists refer to supply function which considers production volume of an item as a function of the prevailing/projected price of the item.

A function expresses the relationship of one variable or a group of variables (called the Domain) with another variable (called the Range) by associating every member in the domain with a unique member in the range. 

Suppose X represents the "price of a good" and Y the "demand". We may postulate that Y is related to X in the sense that if we fix the price of the good, then we will be able to determine the demand. We say that Y is a function of X since we are able to compute a unique value of Y for a given value of X. We may represent the relationship as y = f(x), where f represents the relationship. It is important to note that it may be the case, though it is not necessary, that the relationship is a causal one, that is, X is the cause and Y is the effect. When the relationship is causal, we may regard X as the independent variable and Y as the dependent variable.

Thus,

y = f(x) = 2 - 3x,

y = g(x) = 2x2 - x + 100

are examples of functions. But

                   y2 = x

is not a function of X since the rule that a given value of X should yield a unique value of Y is violated. (Verify for X = 4.)

Functions can be expressed algebraically (as in y = 2x - 3) or graphically or in a tabular form.

Example 

Suppose we play a game involving the toss of two fair coins. And for every Head that turns up, you win Re.1 and for every Tail that turns up, you lose Re.1

Let D = {TT, HT, HH} and R = {-2, 0, 2}

Then the game may be represented by the function

R = f(D)

where f(TT) = -2, f(HT) = 0 and f(HH) = 2


Related Discussions:- Functions

Linear equation in two variables., draw the graph of following pair of line...

draw the graph of following pair of linear equation:-2y=4x-6

Y=Theea[sin(inTheeta)+cos(inTheeta)], Y=θ[SIN(INθ)+COS(INθ)],THEN FIND dy÷d...

Y=θ[SIN(INθ)+COS(INθ)],THEN FIND dy÷dθ. Solution)  Y=θ[SIN(INθ)+COS(INθ)] applying u.v rule then dy÷dθ={[ SIN(INθ)+COS(INθ) ] dθ÷dθ }+ {θ[ d÷dθ{SIN(INθ)+COS(INθ) ] }    => SI

value of integration , what is the value of integration limit n-> infinity...

what is the value of integration limit n-> infinity [n!/n to the power n]to the power 1/n Solution)  limit n-->inf.    [1 + (n!-n^n)/n^n]^1/n = e^ limit n-->inf.    {(n!-n^n)

Draw and label the graphs of the pdf, 1. What is the value of Φ(0)? 2. Φ...

1. What is the value of Φ(0)? 2. Φ is the pdf for N(0, 1); calculate the value of Φ(1.5). 3.  Suppose X ~ N(0, 1). Which, if either, is more likely: .3 ≤ X ≤ .4, or .7 ≤ X ≤

#tiword problem proportions, The scale of a map is 0.5 in 25mi the actua...

The scale of a map is 0.5 in 25mi the actual distance between two cities is 725mi write a proportion that represents the relationship how far apart will the cities be on the map

Example of problems related to applying operations, I had just come back fr...

I had just come back from a very interesting talk arranged by a Mathematics Centre, it was aimed at parents of primary school-going children. They had talked about, and demonstrate

Describe subtracting negative fractions, Describe Subtracting Negative Frac...

Describe Subtracting Negative Fractions? Subtracting two fractions, whether one is positive and one is negative, or whether they are both negative, is almost the same process a

Variation of parameters, In the previous section we looked at the method of...

In the previous section we looked at the method of undetermined coefficients for getting a particular solution to p (t) y′′ + q (t) y′ + r (t) y = g (t)    .....................

Diffrentiation, y=f(a^x)   and f(sinx)=lnx find dy/dx Solution) dy/dx...

y=f(a^x)   and f(sinx)=lnx find dy/dx Solution) dy/dx = (a^x)(lnx)f''(a^x), .........(1) but f(sinx) = lnx implies f(x) = ln(arcsinx) hence f''(x) = (1/arcsinx) (1/ ( ( 1-x

Ineqaulites, how to work out inequalities with negative signs?

how to work out inequalities with negative signs?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd