Functions , Mathematics

Assignment Help:

For the layman, a "function" indicates a relationship among objects. A function provides a model to describe a system. Economists refer to demand functions which refer to the sales volume of an item as a function of the item's price. Similarily, economists refer to supply function which considers production volume of an item as a function of the prevailing/projected price of the item.

A function expresses the relationship of one variable or a group of variables (called the Domain) with another variable (called the Range) by associating every member in the domain with a unique member in the range. 

Suppose X represents the "price of a good" and Y the "demand". We may postulate that Y is related to X in the sense that if we fix the price of the good, then we will be able to determine the demand. We say that Y is a function of X since we are able to compute a unique value of Y for a given value of X. We may represent the relationship as y = f(x), where f represents the relationship. It is important to note that it may be the case, though it is not necessary, that the relationship is a causal one, that is, X is the cause and Y is the effect. When the relationship is causal, we may regard X as the independent variable and Y as the dependent variable.

Thus,

y = f(x) = 2 - 3x,

y = g(x) = 2x2 - x + 100

are examples of functions. But

                   y2 = x

is not a function of X since the rule that a given value of X should yield a unique value of Y is violated. (Verify for X = 4.)

Functions can be expressed algebraically (as in y = 2x - 3) or graphically or in a tabular form.

Example 

Suppose we play a game involving the toss of two fair coins. And for every Head that turns up, you win Re.1 and for every Tail that turns up, you lose Re.1

Let D = {TT, HT, HH} and R = {-2, 0, 2}

Then the game may be represented by the function

R = f(D)

where f(TT) = -2, f(HT) = 0 and f(HH) = 2


Related Discussions:- Functions

Airthmetic progression series, Each of the series 3+5+7+..... and 4+7+10......

Each of the series 3+5+7+..... and 4+7+10.......... is continued to 100 terms find how many terms are identical. Ans) 48 terms would be common to both the series... first take co

One integer is two more than another what is greater integer, One integer i...

One integer is two more than another. The sum of the lesser integer and double the greater is 7. What is the greater integer? Let x = the greater integer and y = the lesser int

Prerequisite, Is prerequisite multipcation or addition

Is prerequisite multipcation or addition

Hi, how do you find the distance between the sun and earth

how do you find the distance between the sun and earth

Java program for sorting algorithms, Introduction: In this project, yo...

Introduction: In this project, you will explore a few sorting algorithms. You will also test their efficiency by both timing how long a given sorting operation takes and count

Numerical method, The Stefan-Boltzmann law can be employed to estimate the ...

The Stefan-Boltzmann law can be employed to estimate the rate of radiation of energy H from a surface of copper sphere with radius = 0.15 ±0.01 m, as in H=AesT^4 where H is in watt

Word problem, A computer is programmed to scan the digits of the counting n...

A computer is programmed to scan the digits of the counting numbers.For example,if it scans 1 2 3 4 5 6 7 8 9 10 11 12 13 then it has scanned 17 digits all together. If the comput

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd