Find strongly connected components - dfs, Data Structure & Algorithms

Assignment Help:

A striking application of DFS is determine a strongly connected component of a graph.

Definition: For graph G = (V, E) , where V refer to the set of vertices and E refer to the set of edges, we described a strongly connected components as follows:

U refers to a sub set of V such that u, v linked to U such that, there is a path from u to v and v to u. That is, all of the pairs of vertices are reachable from each other.

In this section we shall use another concept called transpose of any graph. Given a directed graph G a transpose of G is described as GT. GT is described as a graph along with the same number of vertices & edges with only the direction of the edges being reversed. GT is attained by transposing the adjacency matrix of the directed graph G.

The algorithm for determining these strongly connected components uses the transpose of G, GT.

G = ( V, E ), GT = ( V, ET ), where ET = {  ( u, v ): ( v, u ) belongs to E }

1294_FINDING STRONGLY CONNECTED COMPONENTS.png

Figure: Transpose and strongly connected components of digraph of above Figure

Figure illustrates a directed graph along with sequence in DFS (first number of the vertex illustrates the discovery time and second number illustrates the finishing time of the vertex during DFS. Figure illustrates the transpose of the graph in Figure whose edges are reversed. The strongly connected components are illustrated in zig-zag circle in Figure.

1150_FINDING STRONGLY CONNECTED COMPONENTS1.png

To determine strongly connected component we begun with a vertex with the highest finishing time and begun DFS in the graph GT and then in decreasing order of finishing time. DFS along vertex with finishing time 14 as root determine a strongly connected component. Alike, vertices along finishing times 8 and then 5, while chosen as source vertices also lead to strongly connected components.


Related Discussions:- Find strongly connected components - dfs

Explain the theory of computational complexity, Explain the theory of compu...

Explain the theory of computational complexity A  problem's  intractability  remains  the  similar  for  all  principal  models  of   computations    and   all reasonable inpu

Abstract data type-stack, Conceptually, the stack abstract data type mimics...

Conceptually, the stack abstract data type mimics the information kept into a pile on a desk. Informally, first we consider a material on a desk, where we might keep separate stack

Applications of avl trees, AVL trees are applied into the given situations:...

AVL trees are applied into the given situations: There are few insertion & deletion operations Short search time is required Input data is sorted or nearly sorted

Rules for abstract data type-tree, null(nil) = true                     // ...

null(nil) = true                     // nil refer for empty tree null(fork(e, T, T'))= false   //  e : element , T and T are two sub tree leaf(fork(e, nil, nil)) = true leaf(

Find the shortest paths from bellman-ford algorithm, a) Find the shortest p...

a) Find the shortest paths from r to all other nodes in the digraph G=(V,E) shown below using the Bellman-Ford algorithm (as taught in class). Please show your work, and draw the f

Array-based representation of a binary tree, Assume a complete binary tree ...

Assume a complete binary tree T with n nodes where each node has an item (value). Label the nodes of the complete binary tree T from top to bottom & from left to right 0, 1, ..., n

Depth-First Traversal, With the help of a program and a numerical example e...

With the help of a program and a numerical example explain the Depth First Traversal of a tree.

Implementation of circular queues, One of the main problems with the linear...

One of the main problems with the linear queue is the lack of appropriate utilization of space. Assume that the queue can store 100 elements & the complete queue is full. Thus, it

Different ways for representing s graph, W h at are the different ways by...

W h at are the different ways by which we can represent graph?  Represent the graph drawn below using those ways.     T he d iff e r e nt w a y s by

Explain in detail about the abstract data type, Abstract data type The ...

Abstract data type The thing which makes an abstract data type abstract is that its carrier set and its operations are mathematical entities, like geometric objects or numbers;

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd