Find out that sets of functions are linearly dependent, Mathematics

Assignment Help:

Find out if the following sets of functions are linearly dependent or independent.

 (a) f x ) = 9 cos ( 2x )    g x ) = 2 cos2 ( x ) -  2 sin 2 ( x )

(b) f (t ) = 2t 2                                g (t ) = t 4

Solution:

(a) f x ) = 9 cos ( 2x )     g x ) = 2 cos2 ( x ) -  2 sin 2 ( x )

We'll start via writing down (1) for these two functions.

c(9cos(2x)) + k(2cos2(x)) - 2sin2(x)) = 0

We need to find out if we can find non-zero constants c and k which will make this true for all x or if c = 0 and k = 0 are the only constants which will make this true for all x. it is frequently a fairly not easy process. The process can be simplified along with a good intuition for this type of thing, but that's tough to come by, particularly if you haven't done many of these types of problems.

Under this case the problem can be simplified through recalling

cos2(x) - sin2(x) = cos(2x)

Using this fact our equation turns into,

9c cos ( 2x ) + 2k cos ( 2 x ) = 0

(9c + 2k ) cos ( 2x ) = 0

With such simplification we can notice that this will be zero for any pair of constants c and k which satisfies.

9c + 2k = 0

In between the possible pairs on constants which we could use are the following pairs.

c= 1                 k= -(9/2)

c= 2/9              k = -1

c= -2                k = 9

c= -(7/6)                      k = 21/4

Well I'm sure you can notice there are literally thousands of possible pairs and they can be created as "simple" or as "complicated" as you need them to be.

Thus, we've managed to get a pair of non-zero constants which will make the equation true for all x and hence the two functions are linearly dependent.

(b) f (t ) = 2t 2                                g (t ) = t 4

As from the last part, we'll start through writing down (1) for these functions.

2ct2 + kt4 = 0

In this case there isn't any rapid and simple formula to write one of the functions in terms of another as we did in the first part. Therefore, we're just going to have to notice if we can find constants. We'll begin by noticing that if the original equation is true, so if we differentiate everything we find a new equation which must also be true. Conversely, we've got the subsequent system of two equations in two unknowns.

2ct 2 + kt 4  = 0

4ct + 4kt 3  = 0

 We can solve this system for c and k and notice what we find.  We'll start through solving the second equation for c.

c = -kt2

Then, plug this in the first equation.

2(-kt2)t2 + kt4 = 0

-kt4 = 0

So recall that we are after constants which will make it true for all t. The only manner that it will ever be zero for all t is if k = 0! Therefore, if k = 0 we should also have c = 0.

Thus, we've shown that the only way as,

2ct 2 + kt 4  = 0

It will be true for all t is to need that c = 0 and k = 0. The two functions thus, are linearly independent.

Since we saw in the previous illustrations determining whether two functions are linearly independent or dependent can be a fairly included process. It is where the Wronskian can assist.


Related Discussions:- Find out that sets of functions are linearly dependent

Calculate the amplitude of trigonometry function, Consider the trigonometri...

Consider the trigonometric function f(t) = -3 + 4 cos(Π/ 3 (t - 3/2 )). (a) What is the amplitude of f (t)? (b) What is the period of f(t)? (c) What are the maximum and mi

Determine how maximum revenue with transportation model, The government is...

The government is auctioning off oil leases at two sites. At each site, 100,000 acres of land are to be auctioned. Cliff Ewing, Blake Barnes and Alexis Pickens are bidding for the

Two circles touching internally prove that ox:oy=oa:ob, Two circles touchin...

Two circles touching internally at O. OXY, OAB straight lines, the latter passing through the centres. Prove that OX : OY = OA : OB. Given : Two circles touching internally a

What is minimum spanning tree, What is minimum spanning tree?  Determine a ...

What is minimum spanning tree?  Determine a railway network of minimal cost for the cities in the following graph using Kruskal's algorithm. Ans: Minimum spanning tree in a con

Trigonometry, how to change sin 24 degree in digits?

how to change sin 24 degree in digits?

Probability, two coins are flipped once.what is the probability of getting ...

two coins are flipped once.what is the probability of getting two tails?

Chi square distribution, Chi Square Distribution Chi square was first ...

Chi Square Distribution Chi square was first utilized by Karl Pearson in 1900. It is denoted by the Greek letter χ 2 . This contains only one parameter, called the number of d

What is a function, What is a Function, Anyway? Domain? Range? Next tim...

What is a Function, Anyway? Domain? Range? Next time you're at a fast-food restaurant, take a look at the price list. It may look something like this: • Hamburger.............

Regression - measures of relationships, Regression - Measures of Relationsh...

Regression - Measures of Relationships - It is a concept that refers to the changes which happen in the dependent variable as a result of changes happens on the independent va

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd