Fermats theorem, Mathematics

Assignment Help:

Fermat's Theorem

 If f(x) has a relative extrema at x = c and f′(c) exists then x = c is a critical point of f(x). Actually, this will be a critical point that f′(c) =0.

 Proof

It is a fairly easy proof.  We will suppose that f(x) has a relative maximum to do the proof.

 The proof for a relative minimum is nearly the same. Therefore, if we suppose that we have a relative maximum at x = c after that we know that f(c) ≥ f(x) for all x which are sufficiently close to x = c.

 Particularly for all h which are sufficiently close to zero may be positive or negative we must contain,

f(c) ≥ f(c + h)

or, with a little rewrite we should have,

f(c + h) - f(c) < 0                                             (1)

Now, here suppose that h > 0 and divide both sides of (1) with h. It provides,

(f(c + h) - f(c))/h < 0

Since we're assuming that h > 0 we can here take the right-hand limit of both sides of such.

= limh0¯  (f(c + h) - f(c))/h < limh0¯ 0 = 0

We are also assume that f′(c) exists and recall this if a general limit exists then this should be equal to both one-sided limits. We can so say that,

f′(c) = limh0¯  (f(c + h) - f(c))/h = limh0¯  (f(c + h) - f(c))/h < 0

If we place this together we have here demonstrated that, f′(c) ≤ 0 .

Fine, now let's turn things around and suppose that h < 0 provides,and divide both sides of (1) with h. It  gives

(f(c + h) - f(c))/h > 0

Keep in mind that as we're assuming h < 0 we will require to switch the inequality while we divide thorugh a negative number. We can here do a same argument as above to find that,

f′(c) = limh0 (f(c + h) - f(c))/h = limh0¯  (f(c + h) - f(c))/h >   limh0¯ 0 = 0

The difference now is that currently we're going to be considering at the left-hand limit as we're assuming that h < 0 . This argument illustrates that f′(c) ≥ 0 .

 We've now shown that

 f′(c) ≤ 0 and f′(c)  ≥ 0. So only way both of such can be true at similar time is to have f′(c) = 0 and it means that x = c must be a critical point.

 As considered above, if we suppose that f(x) has a relative minimum then the proof is nearly  the same and therefore isn't illustraten here. The major differences are simply several inequalities require to be switched.


Related Discussions:- Fermats theorem

One-to-one function, One-to-one function: A function is called one-to-one ...

One-to-one function: A function is called one-to-one if not any two values of x produce the same y.  Mathematically specking, this is the same as saying,  f ( x 1 ) ≠ f ( x 2

Show that the height of the opposite house, From a window x meters hi...

From a window x meters high above the ground in a street, the angles of elevation and depression of the top and the foot of the other house on the opposite side of the street  are

What is the net surface area to be painted, You are painting the surface of...

You are painting the surface of a silo that has a diameter of 16 ft and height of 50 ft. What is the net surface area to be painted? Consider the top of the silo is  1/2 a sphere

Negative and positives, in 1970 a record 1.5 of rain fell in one minute at ...

in 1970 a record 1.5 of rain fell in one minute at Basse Terre, guadaloupe in the caribbnean.at this rate, how much rain fell in 3 seconds or 0.05 of a minutes?

Calculate magnitude and direction of maximum principle, At a point in a loa...

At a point in a loaded member, the stresses relative to an x, y, z coordinate system are given by Calculate the magnitude and direction of the maximum principal stress.

Rational, how can you identify if a certain number is rational or irrationa...

how can you identify if a certain number is rational or irrational?

what fill amount are they searching, Brewery has 12 oz bottle filling mach...

Brewery has 12 oz bottle filling machines.  Amount poured by machine is normal distribution mean 12.39 oz  SD 0.04 oz. Company is interested in in reducing the amount of extra beer

Rejection and acceptance regions, Rejection and Acceptance regions All ...

Rejection and Acceptance regions All possible values which a test statistic may either suppose consistency along with the null hypothesis as acceptance region or lead to the re

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd