Fermats theorem, Mathematics

Assignment Help:

Fermat's Theorem

 If f(x) has a relative extrema at x = c and f′(c) exists then x = c is a critical point of f(x). Actually, this will be a critical point that f′(c) =0.

 Proof

It is a fairly easy proof.  We will suppose that f(x) has a relative maximum to do the proof.

 The proof for a relative minimum is nearly the same. Therefore, if we suppose that we have a relative maximum at x = c after that we know that f(c) ≥ f(x) for all x which are sufficiently close to x = c.

 Particularly for all h which are sufficiently close to zero may be positive or negative we must contain,

f(c) ≥ f(c + h)

or, with a little rewrite we should have,

f(c + h) - f(c) < 0                                             (1)

Now, here suppose that h > 0 and divide both sides of (1) with h. It provides,

(f(c + h) - f(c))/h < 0

Since we're assuming that h > 0 we can here take the right-hand limit of both sides of such.

= limh0¯  (f(c + h) - f(c))/h < limh0¯ 0 = 0

We are also assume that f′(c) exists and recall this if a general limit exists then this should be equal to both one-sided limits. We can so say that,

f′(c) = limh0¯  (f(c + h) - f(c))/h = limh0¯  (f(c + h) - f(c))/h < 0

If we place this together we have here demonstrated that, f′(c) ≤ 0 .

Fine, now let's turn things around and suppose that h < 0 provides,and divide both sides of (1) with h. It  gives

(f(c + h) - f(c))/h > 0

Keep in mind that as we're assuming h < 0 we will require to switch the inequality while we divide thorugh a negative number. We can here do a same argument as above to find that,

f′(c) = limh0 (f(c + h) - f(c))/h = limh0¯  (f(c + h) - f(c))/h >   limh0¯ 0 = 0

The difference now is that currently we're going to be considering at the left-hand limit as we're assuming that h < 0 . This argument illustrates that f′(c) ≥ 0 .

 We've now shown that

 f′(c) ≤ 0 and f′(c)  ≥ 0. So only way both of such can be true at similar time is to have f′(c) = 0 and it means that x = c must be a critical point.

 As considered above, if we suppose that f(x) has a relative minimum then the proof is nearly  the same and therefore isn't illustraten here. The major differences are simply several inequalities require to be switched.


Related Discussions:- Fermats theorem

Pearson sucess, do you have a decimal place value chart

do you have a decimal place value chart

Find the volume of water left in the cylindrical tub, A solid is in the for...

A solid is in the form of a right circular cone mounted on a hemisphere. The radius of the hemisphere is 3.5 cm and the height of the cone is 4 cm. The solid is placed in a cylindr

Maths Assessment, Assessment task This Term Assessment will require you ass...

Assessment task This Term Assessment will require you assess the effectiveness of your current lunch budget and prepare a proposal to your caregiver to seek permission to be given

Sample space, Sample Space is the totality of all possible out...

Sample Space is the totality of all possible outcomes of an experiment. Hence if the experiment was inspecting a light bulb, the only possible outcomes

Rational numbers, Although the set of integers caters to a larger aud...

Although the set of integers caters to a larger audience, it is inadequate. This inadequacy has led to the formulation of Rational numbers. Rational numbers are of

Operation research, interestind topic in operation research for doing proje...

interestind topic in operation research for doing project for msc mathematics

the volume of a pyramid, Write a script to determine the volume of a pyram...

Write a script to determine the volume of a pyramid, which is 1/3 * base * height, where the base is length * width.  On time the user to enter values for the length, width, and th

What is congruent angles in parallel lines, What is Congruent Angles in Par...

What is Congruent Angles in Parallel Lines ? Postulate 4.1 (The Parallel Postulate) Through a given point not on a line there is exactly one line parallel to the line. T

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd