Explain introduction to non-euclidean geometry, Mathematics

Assignment Help:

Explain Introduction to Non-Euclidean Geometry?

Up to this point, the type of geometry we have been studying is known as Euclidean geometry. It is based on the studies of the ancient Greek mathematician Euclid. Euclidean geometry was a way to explain or describe the basic layout of the universe. Hundreds of years after him, a few mathematicians developed geometries that are not based on Euclid's axioms. In this chapter, we will explore some concepts of non-Euclidean geometry.

A line, according to Euclid, is perfectly straight and extends infinitely in both directions. Keep in mind that Euclid lived in a world that believed the Earth was flat. But now we know that Earth is a sphere, a line of the Euclidean postulate, perfectly straight and infinitely long, could not exist on the surface of the Earth. A "line" on a spherical surface must follow a curved path. The geometry based on a sphere is called sphere geometry.

Definition

A great circle of a sphere is the circle determined by the intersection of the spherical surface and a secant plane that contains the center of the sphere.

Definition

Lines are great circles in sphere geometry.The equator and longitudinal lines on a globe are great circles. Latitudes on a globe are not great circles.

You already know that on a plane, the shortest distance between any two points is a line segment joining these two points. The shortest distance between any two points on a sphere is measured along a curved path that is a segment of a great circle. The length of a line segment depends on the size of the sphere. Polar points are the points created by a line passing through the center of a sphere intersecting with the sphere. The North and South Poles on Earth are polar points.

Postulate

For any given pair of points on a sphere, there is exactly one line containing them. Conversely, it is also true that a line contains at least two points. But consider now the parallel postulate on a flat plane, "Through a given point not on a given line there is exactly one line parallel to the given line." On a sphere, every line intersects with all other lines.

Postulate 

On a sphere, through a given point not on a given line there is no line parallel to the given line.

Definition

A biperpendicular quadrilateral is a quadrilateral with two sides perpendicular to a third one.
The legs are the two sides perpendicular to the same side.
The base is the side to which the two legs are perpendicular.
The base angle is an angle between base and leg.
The summit is the side opposite the base.
The summit angle is an angle between summit and leg.

Definition

An isosceles birectangular quadrilateral, or a Saccheri quadrilateral is a biperpendicular quadrilateral with congruent legs.

An eighteenth century priest named Saccheri, for whom the Saccheri quadrilateral is named, studied the figure. He tried to use it to prove that the Euclidean parallel postulate was true. Instead he came across something remarkable in the field of non-Euclidean geometry. Using the new postulate on parallel lines, we can prove that a Saccheri quadrilateral is not a rectangle and its two summit angles are not right angles.

Theorem

If the two summit angles of a biperpendicular quadrilateral are unequal, then the larger angle is adjacent to the shorter leg.

Theorem

The summit angles of a Saccheri quadrilateral are congruent.

Theorem

In a Saccheri quadrilateral, the bisector of the base and the summit is perpendicular to both of them.


Related Discussions:- Explain introduction to non-euclidean geometry

Standard deviation, Certain model of new home distributed with a mean of $1...

Certain model of new home distributed with a mean of $150,000. Find percentage of buyers who paid between $150,000-155,000 if standard deviation is $1800.

Numerical methods for ordinary differential equationsordinay, #k1=f(Tn, Xn)...

#k1=f(Tn, Xn), k2=f (Tn + H.Y,Xn + H.Y.k1) Xn+1=Xn + H(a.k1+ b.k2) Find a relation between Y,a and b so that the method is second order consistent.

Differentiate inside function in chain rule, Differentiate following. f ...

Differentiate following. f ( x ) = sin (3x 2   + x ) Solution It looks as the outside function is the sine & the inside function is 3x 2 +x. The derivative is then.

Find out the area of the region, Find out the area of the region enclosed b...

Find out the area of the region enclosed by y = x 2 & y =√x . Solution Firstly, just what do we mean by "area enclosed by". This means that the region we're interested in

Logics Puzzle, It’s been a busy weekend for Larry. Five people in his neigh...

It’s been a busy weekend for Larry. Five people in his neighborhood left on vacation Saturday morning and each of them left a pet for Larry to care for until they return. It’s a go

Hi, how do you find the distance between the sun and earth

how do you find the distance between the sun and earth

What is the probability that the card is a queen, Five cards - the ten, jac...

Five cards - the ten, jack, queen, king and ace, are well shuffled with their face downwards. One card is then picked up at random. (i)  What is the probability that the card is

Exercise to think about this aspect of children- maths, Doing the following...

Doing the following exercise will give you and opportunity to think about this aspect of children. E1) List some illustrations of exploration by four or five-year-olds that you

Problem solving involving quadratic equations, a painting is 20 cm wider th...

a painting is 20 cm wider than its height. its area is 2400 centimeter squared. find its lenght and width

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd