Explain introduction to non-euclidean geometry, Mathematics

Assignment Help:

Explain Introduction to Non-Euclidean Geometry?

Up to this point, the type of geometry we have been studying is known as Euclidean geometry. It is based on the studies of the ancient Greek mathematician Euclid. Euclidean geometry was a way to explain or describe the basic layout of the universe. Hundreds of years after him, a few mathematicians developed geometries that are not based on Euclid's axioms. In this chapter, we will explore some concepts of non-Euclidean geometry.

A line, according to Euclid, is perfectly straight and extends infinitely in both directions. Keep in mind that Euclid lived in a world that believed the Earth was flat. But now we know that Earth is a sphere, a line of the Euclidean postulate, perfectly straight and infinitely long, could not exist on the surface of the Earth. A "line" on a spherical surface must follow a curved path. The geometry based on a sphere is called sphere geometry.

Definition

A great circle of a sphere is the circle determined by the intersection of the spherical surface and a secant plane that contains the center of the sphere.

Definition

Lines are great circles in sphere geometry.The equator and longitudinal lines on a globe are great circles. Latitudes on a globe are not great circles.

You already know that on a plane, the shortest distance between any two points is a line segment joining these two points. The shortest distance between any two points on a sphere is measured along a curved path that is a segment of a great circle. The length of a line segment depends on the size of the sphere. Polar points are the points created by a line passing through the center of a sphere intersecting with the sphere. The North and South Poles on Earth are polar points.

Postulate

For any given pair of points on a sphere, there is exactly one line containing them. Conversely, it is also true that a line contains at least two points. But consider now the parallel postulate on a flat plane, "Through a given point not on a given line there is exactly one line parallel to the given line." On a sphere, every line intersects with all other lines.

Postulate 

On a sphere, through a given point not on a given line there is no line parallel to the given line.

Definition

A biperpendicular quadrilateral is a quadrilateral with two sides perpendicular to a third one.
The legs are the two sides perpendicular to the same side.
The base is the side to which the two legs are perpendicular.
The base angle is an angle between base and leg.
The summit is the side opposite the base.
The summit angle is an angle between summit and leg.

Definition

An isosceles birectangular quadrilateral, or a Saccheri quadrilateral is a biperpendicular quadrilateral with congruent legs.

An eighteenth century priest named Saccheri, for whom the Saccheri quadrilateral is named, studied the figure. He tried to use it to prove that the Euclidean parallel postulate was true. Instead he came across something remarkable in the field of non-Euclidean geometry. Using the new postulate on parallel lines, we can prove that a Saccheri quadrilateral is not a rectangle and its two summit angles are not right angles.

Theorem

If the two summit angles of a biperpendicular quadrilateral are unequal, then the larger angle is adjacent to the shorter leg.

Theorem

The summit angles of a Saccheri quadrilateral are congruent.

Theorem

In a Saccheri quadrilateral, the bisector of the base and the summit is perpendicular to both of them.


Related Discussions:- Explain introduction to non-euclidean geometry

Patrice has worked a certain how many hours has she worked, Patrice has wor...

Patrice has worked a certain amount of hours so far this week. Tomorrow she will work four more hours to finish out the week along with a total of 10 hours. How many hours has she

Word Problem, One box can hold 5 1/2 lbs of nuts and 3 lb 6oz of bolts. Wha...

One box can hold 5 1/2 lbs of nuts and 3 lb 6oz of bolts. What is the total weight for one box?

What is the average temperature on the celsius scale, Peggy's town has an a...

Peggy's town has an average temperature of 23° Fahrenheit in the winter. What is the average temperature on the Celsius scale? If the total amount for both is 80, after that th

Find out the value of n element of a set, A set consists of (2n+1) elements...

A set consists of (2n+1) elements. If the number of subsets of this set which consist of at most n elements is 8192. Find out the value of n. Ans: The following set has (2n + 1

Integraton, how to find area under a curve

how to find area under a curve

Calculus, I need help fast with my calculus work

I need help fast with my calculus work

Neuro marketing, Does neuro marketing give impetus to new consumer behavio...

Does neuro marketing give impetus to new consumer behaviour

Calculate the volume and surface area of a cube, Calculate the volume and s...

Calculate the volume and surface area of a cube: Calculate the volume and surface area of a cube with a = 3".  Be sure to involved units in your answer. Solution: V =

Reason for why limits not existing, Reason for why limits not existing : I...

Reason for why limits not existing : In the previous section we saw two limits that did not.  We saw that did not exist since the function did not settle down to a sing

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd