Equivalence of nfas, Theory of Computation

It is not hard to see that ε-transitions do not add to the accepting power of the model. The underlying idea is that whenever an ID (q, σ  v) directly computes another (p, v) via a path that includes some number of ε-transitions (before the σ-transition, after it or both), we can get the same effect by extending the transition relation to include a σ-transition directly from q to v. So, in the example we could add ‘a' edges from 0 to 1 (accounting for the path 0 2072_Equivalence of NFAs.png 3) and from 1 to 3 (accounting for the path 1 27_Equivalence of NFAs1.png 3) and ‘b' edges from 1 to 3 (accounting for the path 1 1649_Equivalence of NFAs2.png  3), from 3 to 2 (accounting for the path 3 1088_Equivalence of NFAs3.png2), and from 1 to 2 (accounting for the  path 1 2144_Equivalence of NFAs4.png2), Note that in each of these cases this corresponds to extending δ(q, σ) to include all states in ˆ δ(q, σ). The remaining effect of the ε-transition from 0 to 2 is the fact that the automaton accepts ‘ε'. This can be obtained, of course, by simply adding 0 to F. Formalizing this  we get a lemma.

Posted Date: 3/21/2013 2:54:59 AM | Location : United States







Related Discussions:- Equivalence of nfas, Assignment Help, Ask Question on Equivalence of nfas, Get Answer, Expert's Help, Equivalence of nfas Discussions

Write discussion on Equivalence of nfas
Your posts are moderated
Related Questions
We'll close our consideration of regular languages by looking at whether (certain) problems about regular languages are algorithmically decidable.

Theorem The class of recognizable languages is closed under Boolean operations. The construction of the proof of Lemma 3 gives us a DFA that keeps track of whether or not a give

LTO was the closure of LT under concatenation and Boolean operations which turned out to be identical to SF, the closure of the ?nite languages under union, concatenation and compl

The generalization of the interpretation of strictly local automata as generators is similar, in some respects, to the generalization of Myhill graphs. Again, the set of possible s

The upper string r ∈ Q+ is the sequence of states visited by the automaton as it scans the lower string w ∈ Σ*. We will refer to this string over Q as the run of A on w. The automa

design an automata for strings having exactly four 1''s

write grammer to produce all mathematical expressions in c.

Prove that Language is non regular TRailing count={aa ba aaaa abaa baaa bbaa aaaaaa aabaaa abaaaa..... 1) Pumping Lemma 2)Myhill nerode

S-->AAA|B A-->aA|B B-->epsilon

Find the Regular Grammar for the following Regular Expression: a(a+b)*(ab*+ba*)b.