Em algorithm, Advanced Statistics

Assignment Help:

The method or technique for producing the sequence of parameter estimates that, under the mild regularity conditions, converges to maximum likelihood estimator. Of particular significance in the context of the incomplete data problems. The algorithm comprises of two steps, called as the E, or
Expectation step and the M, or the Maximization step. In the previous, the expected value of log-likelihood conditional on the observed data and the current estimates of parameters are found. In the M-step, the function is maximized to provide the updated parameter estimates which increase the likelihood. The two steps are alternated until the convergence is attained. The algorithm might, in some cases, becoms very slow to converge.


This is acronym for the Epidemiological, Graphics, Estimation and Testing of the program developed for the analysis of the data from studies in epidemiology. It can be made in use for logistic regression and models might include random effects to permit over dispersion to be modelled. The beta- binomial distribution can be fitted.


Related Discussions:- Em algorithm

Leaps-and-bounds algorithm, Leaps-and-bounds algorithm is an algorithm whi...

Leaps-and-bounds algorithm is an algorithm which is used to ?nd the optimal solution in problems which might have a large number of possible solutions. Begins by dividing the poss

Weighted least squares, Weighted least squares  is the method of estimation...

Weighted least squares  is the method of estimation in which the estimates arise from minimizing the weighted sum of squares of the differences between response variable and its pr

Implementation of huffman coding, Input to the compress is a text le with a...

Input to the compress is a text le with arbitrary size, but for this assignment we will assume that the data structure of the file fits in the main memory of a computer. Output of

Business forcastin.., elements , importance, limitation, and theories

elements , importance, limitation, and theories

frequentist inference, The approach to statistics based on a frequency vie...

The approach to statistics based on a frequency view of probability in which it is supposed that it is possible to consider an in?nite sequence of the independent repetitions of th

Artificial neural network, Artificial neural network : A mathematical arran...

Artificial neural network : A mathematical arrangement modelled on the human neural network and designed to attack various statistical problems, particularly in the region of patte

Explain identification keys., Identification keys: The devices for identif...

Identification keys: The devices for identifying the samples from a set of known taxa, which contains a tree- structure where each node corresponds to the diagnostic question of t

Solve this, An analyst counted 17 A/B runs and 26 time series observations....

An analyst counted 17 A/B runs and 26 time series observations. Do these results suggest that the data are nonrandom? Explain

Falsediscoveryrate (fdr), The approach of controlling the error rate in an ...

The approach of controlling the error rate in an exploratory analysis where number of hypotheses are tested, but where the strict control which is provided by multiple comparison p

Regression, regression line drawn as Y=C+1075x, when x was 2, and y was 239...

regression line drawn as Y=C+1075x, when x was 2, and y was 239, given that y intercept was 11. calculate the residual

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd