Em algorithm, Advanced Statistics

Assignment Help:

The method or technique for producing the sequence of parameter estimates that, under the mild regularity conditions, converges to maximum likelihood estimator. Of particular significance in the context of the incomplete data problems. The algorithm comprises of two steps, called as the E, or
Expectation step and the M, or the Maximization step. In the previous, the expected value of log-likelihood conditional on the observed data and the current estimates of parameters are found. In the M-step, the function is maximized to provide the updated parameter estimates which increase the likelihood. The two steps are alternated until the convergence is attained. The algorithm might, in some cases, becoms very slow to converge.


This is acronym for the Epidemiological, Graphics, Estimation and Testing of the program developed for the analysis of the data from studies in epidemiology. It can be made in use for logistic regression and models might include random effects to permit over dispersion to be modelled. The beta- binomial distribution can be fitted.


Related Discussions:- Em algorithm

Non parametric maximum likelihood (npml), Non parametric maximum likelihood...

Non parametric maximum likelihood (NPML) is a likelihood approach which does not need the specification of the full parametric family for the data. Usually, the non parametric max

NULL HYPOTHESES, Ask questT-TEST? ion #Minimum 100 words accepted#

Ask questT-TEST? ion #Minimum 100 words accepted#

Independent component analysis (ica), Independent component analysis (ICA) ...

Independent component analysis (ICA) is the technique for analyzing the complex measured quantities thought to be mixtures of other more fundamental quantities, into their fundamen

Durbin watson statistic, The Null Hypothesis - H0: There is no first order ...

The Null Hypothesis - H0: There is no first order autocorrelation The Alternative Hypothesis - H1: There is first order autocorrelation Durbin-Watson statistic = 1.98307

Determinant, A value related with the square matrix which represents sums a...

A value related with the square matrix which represents sums and products of its elements. For instance, if the matrix is   then the determinant of A (conventionally written as

Sequencing problem, when there is tie in sequencing then what we do

when there is tie in sequencing then what we do

Command-line options, Command-Line options Compression: C++:  ./comp...

Command-Line options Compression: C++:  ./compress  -f  myfile.txt  [-o  myfile.hzip  -s Java:  sh  compress.sh  -f  myfile.txt  [-o  myfile.hzip  -s] Decompression:

Randomization tests, Randomization tests are the procedures for determinin...

Randomization tests are the procedures for determining the statistical significance directly from the data with- out recourse to some particular sampling distribution. For instanc

Line-intersect sampling, Line-intersect sampling is a technique of unequal...

Line-intersect sampling is a technique of unequal probability sampling for selecting the sampling units in the geographical area. A sample of lines is drawn in a study area and, w

Cellular proliferation models, Cellular proliferation models : Models are u...

Cellular proliferation models : Models are used to describe the growth of the  cell populations. One of the example is the deterministic model   where N(t) is the number of cel

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd