Em algorithm, Advanced Statistics

Assignment Help:

The method or technique for producing the sequence of parameter estimates that, under the mild regularity conditions, converges to maximum likelihood estimator. Of particular significance in the context of the incomplete data problems. The algorithm comprises of two steps, called as the E, or
Expectation step and the M, or the Maximization step. In the previous, the expected value of log-likelihood conditional on the observed data and the current estimates of parameters are found. In the M-step, the function is maximized to provide the updated parameter estimates which increase the likelihood. The two steps are alternated until the convergence is attained. The algorithm might, in some cases, becoms very slow to converge.


This is acronym for the Epidemiological, Graphics, Estimation and Testing of the program developed for the analysis of the data from studies in epidemiology. It can be made in use for logistic regression and models might include random effects to permit over dispersion to be modelled. The beta- binomial distribution can be fitted.


Related Discussions:- Em algorithm

Ehrenberg''s equation, The equation linking the height and weight of the ch...

The equation linking the height and weight of the children between the ages of 5 and 13 and given as follows   here w is the mean weight in kilograms and h the mean height in

Quittingill effect, Quittingill effect is a  problem which occurs most fre...

Quittingill effect is a  problem which occurs most frequently in studies of the smoker cessation where smokers frequently quit smoking following the onset of the disease symptoms

Dirichlet process mixture models, The nonparametric Bayesian inference appr...

The nonparametric Bayesian inference approach to using the finite mixture distributions for modelling data suspected of the containing distinct groups of observations; this approac

Gaussian process, The generalization of the normal distribution used for th...

The generalization of the normal distribution used for the characterization of functions. It is known as a Gaussian process because it has Gaussian distributed finite dimensional m

Command-line options, Command-Line options Compression: C++:  ./comp...

Command-Line options Compression: C++:  ./compress  -f  myfile.txt  [-o  myfile.hzip  -s Java:  sh  compress.sh  -f  myfile.txt  [-o  myfile.hzip  -s] Decompression:

Clinical trials, Clinical trials : Medical experiments designed to assess w...

Clinical trials : Medical experiments designed to assess which of two or more treatments is much more effective. It is based on one of the oldest philosophy of the scienti?c resear

Density estimation, Procedures for estimating the probability distributions...

Procedures for estimating the probability distributions without supposing any particular functional form. Constructing the histogram is perhaps the easiest example of such type of

Generalized linear models, Introduction to Generalized Linear Models (GLM) ...

Introduction to Generalized Linear Models (GLM) We introduce the notion of GLM as an extension of the traditional normal-theory-based linear regression models. This will be very

Finite mixture distribution, The probability distribution which is a linear...

The probability distribution which is a linear function of the number of component probability distributions. This type of distributions is used to model the populations thought to

Gene environment interaction, The interplay of the genes and environment on...

The interplay of the genes and environment on, for instance, the risk of disease. The term represents the step away from the argument as to whether the nature or nurture is the pre

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd