Em algorithm, Advanced Statistics

Assignment Help:

The method or technique for producing the sequence of parameter estimates that, under the mild regularity conditions, converges to maximum likelihood estimator. Of particular significance in the context of the incomplete data problems. The algorithm comprises of two steps, called as the E, or
Expectation step and the M, or the Maximization step. In the previous, the expected value of log-likelihood conditional on the observed data and the current estimates of parameters are found. In the M-step, the function is maximized to provide the updated parameter estimates which increase the likelihood. The two steps are alternated until the convergence is attained. The algorithm might, in some cases, becoms very slow to converge.


This is acronym for the Epidemiological, Graphics, Estimation and Testing of the program developed for the analysis of the data from studies in epidemiology. It can be made in use for logistic regression and models might include random effects to permit over dispersion to be modelled. The beta- binomial distribution can be fitted.


Related Discussions:- Em algorithm

Categorical variable, Categorical variable : A variable which provides the ...

Categorical variable : A variable which provides the appropriate label of observation after the allocation to one of the several possible categories, for instance, the respiratory

Describe hurdle model, Hurdle Model:  The model for count data which postul...

Hurdle Model:  The model for count data which postulates two processes, one generating the zeros in the data and one generating positive values. The binomial model decides the bina

Intention-to-treat analysis, Intention-to-treat analysis is the process in...

Intention-to-treat analysis is the process in which all the patients randomly allocated to a treatment in the clinical trial are analyzed together as representing that particular

Procrustes analysis, Procrustes analysis is a technique of comparing the a...

Procrustes analysis is a technique of comparing the alternative geometrical representations of a group of multivariate data or of the proximity matrix, for instance, two competing

Frequency polygon, It is the diagram used to display the values graphically...

It is the diagram used to display the values graphically in a frequency distribution. The frequencies are graphed as an ordinate against the class mid-points as abscissae. The p

Mean, You have learned that there are 3 major central measures of any data ...

You have learned that there are 3 major central measures of any data set. Namely: mean, median, and mode. Which of the three, do the outliers affect the most?

Hanging rootogram, Hanging rootogram is   he diagram comparing the observe...

Hanging rootogram is   he diagram comparing the observed rootogram with the ?tted curve, in which dissimilarities between the two are displayed in relation to the horizontal axis,

K-means cluster analysis, K-means cluster analysis is the method of cluste...

K-means cluster analysis is the method of cluster analysis in which from an initial partition of observations into K clusters, each observation in turn is analysed and reassigned,

Data fusion, The act of combining data from heterogeneous sources with the ...

The act of combining data from heterogeneous sources with the intent of extracting information that would not be available for any single source in isolation. An example is the com

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd