Em algorithm, Advanced Statistics

Assignment Help:

The method or technique for producing the sequence of parameter estimates that, under the mild regularity conditions, converges to maximum likelihood estimator. Of particular significance in the context of the incomplete data problems. The algorithm comprises of two steps, called as the E, or
Expectation step and the M, or the Maximization step. In the previous, the expected value of log-likelihood conditional on the observed data and the current estimates of parameters are found. In the M-step, the function is maximized to provide the updated parameter estimates which increase the likelihood. The two steps are alternated until the convergence is attained. The algorithm might, in some cases, becoms very slow to converge.


This is acronym for the Epidemiological, Graphics, Estimation and Testing of the program developed for the analysis of the data from studies in epidemiology. It can be made in use for logistic regression and models might include random effects to permit over dispersion to be modelled. The beta- binomial distribution can be fitted.


Related Discussions:- Em algorithm

Mendelian randomization, Mendelian randomization is the term applied to th...

Mendelian randomization is the term applied to the random assortment of alleles at the time of gamete formation, a process which results in the population distributions of genetic

Minimum volume ellipsoid, Minimum volume ellipsoid is a term for ellipsoid...

Minimum volume ellipsoid is a term for ellipsoid of the minimum volume which covers some specified proportion of the set of multivariate data. It is commonly used to construct rob

Statistics HW, we are testing : Ho: µ=40 versus Ha: µ>40 (a= 0.01) Suppose...

we are testing : Ho: µ=40 versus Ha: µ>40 (a= 0.01) Suppose that the test statistic is z0=2.75 based on a sample size of n=25. Assume that data are normal with mean mu and standa

Bonferroni correction, Bonferroni correction : A procedure for guarding aga...

Bonferroni correction : A procedure for guarding against the rise in the probability of a type I error when performing the multiple signi?cance tests. To maintain probability of a

Chapter 7&8, Chapter 7 2. Describe the distribution of sample means (shape...

Chapter 7 2. Describe the distribution of sample means (shape, expected value, and standard error) for samples of n =36 selected from a population with a mean of µ = 100 and a sta

Matching, Matching is the method of making a study group and a comparison ...

Matching is the method of making a study group and a comparison group comparable with respect to the extraneous factors. Generally used in the retrospective studies when selecting

Ehrenberg''s equation, The equation linking the height and weight of the ch...

The equation linking the height and weight of the children between the ages of 5 and 13 and given as follows   here w is the mean weight in kilograms and h the mean height in

Data mining, The non-trivial extraction of implicit, earlier unknown and po...

The non-trivial extraction of implicit, earlier unknown and potentially useful information from data, specifically high-dimensional data, using pattern recognition, artificial inte

Ljung-box q-test, The Null Hypothesis - H0: There is no autocorrelation ...

The Null Hypothesis - H0: There is no autocorrelation The Alternative Hypothesis - H1: There is at least first order autocorrelation Rejection Criteria: Reject H0 if LBQ1 >

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd