Em algorithm, Advanced Statistics

Assignment Help:

The method or technique for producing the sequence of parameter estimates that, under the mild regularity conditions, converges to maximum likelihood estimator. Of particular significance in the context of the incomplete data problems. The algorithm comprises of two steps, called as the E, or
Expectation step and the M, or the Maximization step. In the previous, the expected value of log-likelihood conditional on the observed data and the current estimates of parameters are found. In the M-step, the function is maximized to provide the updated parameter estimates which increase the likelihood. The two steps are alternated until the convergence is attained. The algorithm might, in some cases, becoms very slow to converge.


This is acronym for the Epidemiological, Graphics, Estimation and Testing of the program developed for the analysis of the data from studies in epidemiology. It can be made in use for logistic regression and models might include random effects to permit over dispersion to be modelled. The beta- binomial distribution can be fitted.


Related Discussions:- Em algorithm

Conditional probability, Conditional probability : The probability that an ...

Conditional probability : The probability that an event occurs given the outcome of other event. Generally written, Pr(A|B). For instance, the probability of a person being color b

Glejser test, Glejser test is the test for the heteroscedasticity in the e...

Glejser test is the test for the heteroscedasticity in the error terms of the regression analysis which involves regressing the absolute values of the regression residuals for the

Gene environment interaction, The interplay of the genes and environment on...

The interplay of the genes and environment on, for instance, the risk of disease. The term represents the step away from the argument as to whether the nature or nurture is the pre

Logistic regression - computing log odds without probabiliti, Please help w...

Please help with following problem: : Let’s consider the logistic regression model, which we will refer to as Model 1, given by log(pi / [1-pi]) = 0.25 + 0.32*X1 + 0.70*X2 + 0.

Fan-spread model, This term sometimes is applied to the model for explainin...

This term sometimes is applied to the model for explaining the differences found between naturally happening groups which are greater than those observed on some previous occasion;

Define lagging indicators, Lagging indicators: The part of a collection of...

Lagging indicators: The part of a collection of the economic time series designed to give information about the broad swings in measures of the aggregate economic activity known a

Decision theory, A unified approach to all problems of prediction, estimati...

A unified approach to all problems of prediction, estimation, and hypothesis testing. It is based on concept of the decision function, which tells the performer of experiment how t

Option-3 scheme, Option-3 scheme is a scheme of measurement used in the si...

Option-3 scheme is a scheme of measurement used in the situations investigating possible changes over the time in longitudinal data. The scheme is planned to prevent measurement o

Expected frequencies, A term commonly encountered in the analysis of the co...

A term commonly encountered in the analysis of the contingency tables. Such type of frequencies are the estimates of the values to be expected under hypothesis of interest. In a tw

Half-normal plot, Half-normal plot is a  plot for diagnosing the model inad...

Half-normal plot is a  plot for diagnosing the model inadequacy or revealing the presence of outliers, in which the absolute values of, for instance, the residuals from the multipl

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd