Em algorithm, Advanced Statistics

Assignment Help:

The method or technique for producing the sequence of parameter estimates that, under the mild regularity conditions, converges to maximum likelihood estimator. Of particular significance in the context of the incomplete data problems. The algorithm comprises of two steps, called as the E, or
Expectation step and the M, or the Maximization step. In the previous, the expected value of log-likelihood conditional on the observed data and the current estimates of parameters are found. In the M-step, the function is maximized to provide the updated parameter estimates which increase the likelihood. The two steps are alternated until the convergence is attained. The algorithm might, in some cases, becoms very slow to converge.


This is acronym for the Epidemiological, Graphics, Estimation and Testing of the program developed for the analysis of the data from studies in epidemiology. It can be made in use for logistic regression and models might include random effects to permit over dispersion to be modelled. The beta- binomial distribution can be fitted.


Related Discussions:- Em algorithm

Regression analysis, with the help of regression analysis create a model th...

with the help of regression analysis create a model that best describes the situation. Indicate clearly the effect that each factors given in the attached file and other factors ma

Lagrange multipliertest, The Null Hypothesis - H0:  There is autocorrelatio...

The Null Hypothesis - H0:  There is autocorrelation The Alternative Hypothesis - H1: There is no autocorrelation Rejection Criteria: Reject H0 (n-s)R 2 > = (1515 - 4) x (0.

Daycare, facts and statistics about daycare

facts and statistics about daycare

Rejection Region (graded), How is the rejection region defined and how is t...

How is the rejection region defined and how is that related to the z-score and the p value? When do you reject or fail to reject the null hypothesis? Why do you think statisticians

Explain Genetic algorithms, Genetic algorithms: The optimization events mo...

Genetic algorithms: The optimization events motivated by the biological analogies. The prime idea is to try to mimic the 'survival of the fittest' rule of the genetic mutation in

Quota sample, Quota sample is the sample in which the units are not select...

Quota sample is the sample in which the units are not selected at the random, but in terms of a particular number of units in each of a number of categories; for instance, 10 men

Bayesian confidence interval, Bayesian confidence interval : An interval of...

Bayesian confidence interval : An interval of the posterior distribution which is so that the density of it at any point inside the interval is greater than that of the density at

Generalized linear models, Introduction to Generalized Linear Models (GLM) ...

Introduction to Generalized Linear Models (GLM) We introduce the notion of GLM as an extension of the traditional normal-theory-based linear regression models. This will be very

Explain Grade of membership model, Grade of membership model: This is the ...

Grade of membership model: This is the general distribution free method for the clustering of the multivariate data in which only categorical variables are included. The model ass

Probability weighting, Probability weighting is the procedure of attaching...

Probability weighting is the procedure of attaching weights equal to inverse of the probability of being selected, to each respondent's record in the sample survey. These weights

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd