Normal distribution, Advanced Statistics

Assignment Help:

Your first task is to realize two additional data generation functions. Firstly, extend the system to generate random integral numbers based on normal distribution. You need to study Data Generator's structure and extend number generation type to activate normal distribution. The interface needs to obtain both mean and sigma as shown in Figure 1. Consider the code found here which is reproduced below for your convenience:
function gauss() {
// N(0,1)
// returns random number with normal distribution:
// mean=0
// std dev=1

// auxiliary vars
$x=random_0_1();
$y=random_0_1();
// two independent variables with normal distribution N(0,1)
$u=sqrt(-2*log($x))*cos(2*pi()*$y);
$v=sqrt(-2*log($x))*sin(2*pi()*$y);
// i will return only one, couse only one needed
return $u;
}
function gauss_ms($m=0.0,$s=1.0) {
// N(m,s)
// returns random number with normal distribution:
// mean=m
// std dev=s
return gauss()*$s+$m;
}
function random_0_1() {
// auxiliary function
// returns random number with flat distribution from 0 to 1
return (float)rand()/(float)getrandmax();
}
Notice that the return value of the above code is a floating value. You can round it to nearest integer by adding a "rounding option" to the interface.

773_normal distribution.png

Figure: Functions added to Data Generator

Next, realize one form of skewed distribution that approximates Pareto Principle. Consider a skewed access pattern often evidenced in data applications such that s percent of accesses would go to (100 - s) percent of data items. For instance, a typical "80-20 rule" for 1000 accesses over 500 data items means that about 800 accesses (80% of accesses) go to a specific set of about 100 items (20% of data items). In our case, data generation should be based on independent repeated trials, not as all trials once in a batch. Therefore, implementing strict Pareto Principle is difficult. Instead, we can approximate access pattern generation by the following method:

• skew generation function receives a range r and a skew factor s as parameter, both of which are integers and r must be larger 1 while s must be between 50 and 100.

• data elements are considered to have unique IDs in the range [1, r], in which elements are listed in an increasing order of IDs such as 1, 2, 3, ..., r.

• skew generation function produces an integer value between 1 and r representing a data access in the following manner:

1. skewed access will go to the top portion of the elements, that is, those between 1 and t = r × (100 - s) / 100.

2. draw a random number p from uniform distribution between 0 and 99.

3. if p falls in less than s, i.e., [0, s - 1], the top portion of elements [1, t] is accessed.

4. otherwise the access goes to [t + 1, r].

Above illustration should be sufficient to provide you with the concrete requirement for the two frequently utilized data generation. Figure 1 and 2 shows interface and sample output respectively. In these figures, rounding to integer is applied automatically. A checkbox should be added to the interface so that users can choose whether values generated are rounded or not. Notice that this development is not from scratch, but is "reverse engineering" of already developed product. Addition of the above functions to Data Generator is easily done. You should look into the contents of docs/data_types.php.

2439_normal distribution1.png

Figure: Generated data example


Related Discussions:- Normal distribution

Hosmer-lemeshow test, Hosmer-Lemeshow test is a goodness-of-fit test taken...

Hosmer-Lemeshow test is a goodness-of-fit test taken in use in logistic regression, particularly when there are regular covariates. Units are spitted into deciles based on predict

Conditional logistic regression, Conditional logistic regression : The form...

Conditional logistic regression : The form of logistic regression designed to work with the clustered data, such as data including matched pairs of the subjects, in which subject-s

Principal components regression analysis, Principal components regression a...

Principal components regression analysis is a process often taken in use to overcome the problem of multicollinearity in the regression, when simply deleting a number of the expla

Draw histogram of income, The skewness is a measure of asymmetry and as it ...

The skewness is a measure of asymmetry and as it is positive at 4.29, it is greater than zero which reveals that the tail extends to the right indicating the distribution to be mor

Locally weighted regression, Locally weighted regression  is the method of ...

Locally weighted regression  is the method of regression analysis in which the polynomials of degree one (linear) or two (quadratic) are used to approximate regression function in

Probability and random processes, how to find the PDF and CDF of a gamma ra...

how to find the PDF and CDF of a gamma random variable with given equation?

Occam''s razor, Occam's razor  is an early statement of the parsimony princ...

Occam's razor  is an early statement of the parsimony principle, which was given by William of Occam (1280-1349) namely 'entia non sunt multiplicanda praeter necessitatem'; which m

Tests for heteroscedasticity, The Null Hypothesis - H0: There is no heteros...

The Null Hypothesis - H0: There is no heteroscedasticity i.e. β 1 = 0 The Alternative Hypothesis - H1:  There is heteroscedasticity i.e. β 1 0 Reject H0 if nR2 > MTB >

Statistics HW, we are testing : Ho: µ=40 versus Ha: µ>40 (a= 0.01) Suppose...

we are testing : Ho: µ=40 versus Ha: µ>40 (a= 0.01) Suppose that the test statistic is z0=2.75 based on a sample size of n=25. Assume that data are normal with mean mu and standa

SCATTER DIAGRAM, MEANING ,IMPORTANCE AND RELEAVANCE OF SCATTER DIAGRAM

MEANING ,IMPORTANCE AND RELEAVANCE OF SCATTER DIAGRAM

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd