Normal distribution, Advanced Statistics

Assignment Help:

Your first task is to realize two additional data generation functions. Firstly, extend the system to generate random integral numbers based on normal distribution. You need to study Data Generator's structure and extend number generation type to activate normal distribution. The interface needs to obtain both mean and sigma as shown in Figure 1. Consider the code found here which is reproduced below for your convenience:
function gauss() {
// N(0,1)
// returns random number with normal distribution:
// mean=0
// std dev=1

// auxiliary vars
$x=random_0_1();
$y=random_0_1();
// two independent variables with normal distribution N(0,1)
$u=sqrt(-2*log($x))*cos(2*pi()*$y);
$v=sqrt(-2*log($x))*sin(2*pi()*$y);
// i will return only one, couse only one needed
return $u;
}
function gauss_ms($m=0.0,$s=1.0) {
// N(m,s)
// returns random number with normal distribution:
// mean=m
// std dev=s
return gauss()*$s+$m;
}
function random_0_1() {
// auxiliary function
// returns random number with flat distribution from 0 to 1
return (float)rand()/(float)getrandmax();
}
Notice that the return value of the above code is a floating value. You can round it to nearest integer by adding a "rounding option" to the interface.

773_normal distribution.png

Figure: Functions added to Data Generator

Next, realize one form of skewed distribution that approximates Pareto Principle. Consider a skewed access pattern often evidenced in data applications such that s percent of accesses would go to (100 - s) percent of data items. For instance, a typical "80-20 rule" for 1000 accesses over 500 data items means that about 800 accesses (80% of accesses) go to a specific set of about 100 items (20% of data items). In our case, data generation should be based on independent repeated trials, not as all trials once in a batch. Therefore, implementing strict Pareto Principle is difficult. Instead, we can approximate access pattern generation by the following method:

• skew generation function receives a range r and a skew factor s as parameter, both of which are integers and r must be larger 1 while s must be between 50 and 100.

• data elements are considered to have unique IDs in the range [1, r], in which elements are listed in an increasing order of IDs such as 1, 2, 3, ..., r.

• skew generation function produces an integer value between 1 and r representing a data access in the following manner:

1. skewed access will go to the top portion of the elements, that is, those between 1 and t = r × (100 - s) / 100.

2. draw a random number p from uniform distribution between 0 and 99.

3. if p falls in less than s, i.e., [0, s - 1], the top portion of elements [1, t] is accessed.

4. otherwise the access goes to [t + 1, r].

Above illustration should be sufficient to provide you with the concrete requirement for the two frequently utilized data generation. Figure 1 and 2 shows interface and sample output respectively. In these figures, rounding to integer is applied automatically. A checkbox should be added to the interface so that users can choose whether values generated are rounded or not. Notice that this development is not from scratch, but is "reverse engineering" of already developed product. Addition of the above functions to Data Generator is easily done. You should look into the contents of docs/data_types.php.

2439_normal distribution1.png

Figure: Generated data example


Related Discussions:- Normal distribution

Calculate cutoff values and analyzing histograms, 1. You are interested in ...

1. You are interested in investigating if being above or below the median income (medloinc) impacts ACT means (act94) for schools. Complete the necessary steps to examine univariat

Explain maz experiments, MAZ experiments : The Mixture-amount experiments w...

MAZ experiments : The Mixture-amount experiments which include control tests for which the entire amount of the mixture is set to zero. Examples comprise drugs (some patients do no

Regression discontinuity design, Regression discontinuity design is the qu...

Regression discontinuity design is the quasi-experimental design in which participants in, for instance, an intervention study, are assigned to the treatment and control groups on

Balanced incomplete block design, Balanced incomplete block design : A desi...

Balanced incomplete block design : A design in which all the treatments are not used in all blocks. Such designs have the below stated properties: * each block comprises the

Expert systems, The computer programs designed to mimic the role of the exp...

The computer programs designed to mimic the role of the expert human consultant. This type of systems are capable to cope with the complex problems of the medical decision makin

Relative risk, Relative risk is the measure of the association between the...

Relative risk is the measure of the association between the exposure to a particular factor and the risk or probability of a convinced outcome, calculated as follows     therefor

Bimodal distribution, Bimodal distribution : The probability distribution, ...

Bimodal distribution : The probability distribution, or we can simply say the frequency distribution, with two modes. Figure 15 shows the example of each of them

Decision Analysis, Build-Rite construction has received favorable publicity...

Build-Rite construction has received favorable publicity from guest appearances on a public TV home improvement program. Public TV programming decisions seem to be unpredictable, s

Continual reassessment method, Continual reassessment method: An approach ...

Continual reassessment method: An approach which applies Bayesian inference for determining the maximum tolerated dose in a phase I trial. The method starts by assuming a logistic

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd