Domain and range of a function , Mathematics

Assignment Help:

Domain and range of a functio:  One of the more significant ideas regarding functions is that of the domain and range of a function. In simplest world the domain of function is the set of all values which can be plugged in a function and have the function present and have a real number for a value.  Thus, for the domain we have to avoid division by zero, square roots of -ve numbers, logarithms of zero & logarithms of negative numbers, etc. The range of a function is just the set of all possible values which a function can take.

Let's determine the domain and range of a few functions.

Example : Determine the domain and range of following functions.

 f ( x ) = 5x - 3

Solution

We know that it is a line & that it's not a horizontal line (Since the slope is 5 & not zero...). It means that this function can take on any value and thus the range is all real numbers. By using "mathematical" notation it is,

 Range : ( -∞, ∞ )

It is more usually a polynomial and we know that we can plug any value in a polynomial and thus the domain in this case is also all real numbers or,

 Domain:   - ∞ < x < ∞           or          (-∞, ∞)

On the whole determining the range of a function can be rather difficult.  As long as we limit ourselves down to "simple" functions, some of which we looked at in the earlier example, determining the range is not too bad, however for most of the functions it can be a difficult procedure.

Due to the difficulty in determining the range for a lot of functions we had to keep those in the earlier set somewhat simple that also meant that we couldn't actually look at some of the more complicated domain instance that are liable to be significant in a Calculus course. Thus, let's take a look at another set of functions only this time we'll just look for the domain.


Related Discussions:- Domain and range of a function

Extrema- minimum and maximum values, Extrema : Note as well that while we ...

Extrema : Note as well that while we say an "open interval around x = c " we mean that we can discover some interval ( a, b ) , not involving the endpoints, such that a Also,

Find and classify all the equilibrium solutions, Find and classify all the ...

Find and classify all the equilibrium solutions to the subsequent differential equation. y' = y 2 - y - 6 Solution First, get the equilibrium solutions. It is generally

Find the time required for an enlargement, 1. The polynomial G(x) = -0.006x...

1. The polynomial G(x) = -0.006x4 + 0.140x3 - 0.53x2 + 1.79x measures the concentration of a dye in the bloodstream x seconds after it is injected. Does the concentration increase

Use the definition of the right- and left-handed limits, Use the definition...

Use the definition of the limit to prove the given limit. Solution Let ε> 0 is any number then we have to find a number δ > 0 so that the following will be true. |

Calculus, how to find the volume

how to find the volume

Example of division , Example of division: Divide 738 by 83. Soluti...

Example of division: Divide 738 by 83. Solution: Example: Divide 6409 by 28. Solution: Division could be verified through multiplying

Definite integral, Definite Integral : Given a function f ( x ) which is c...

Definite Integral : Given a function f ( x ) which is continuous on the interval [a,b] we divide the interval in n subintervals of equivalent width, Δx , and from each interval se

Solve cos( 4 ) = -1 trig function, Solve cos( 4 θ ) = -1 . Solution ...

Solve cos( 4 θ ) = -1 . Solution There actually isn't too much to do along with this problem.  However, it is different from all the others done to this point.  All the oth

Interquarticles, (i may have spelled it wrong)but i forgot how to do them.

(i may have spelled it wrong)but i forgot how to do them.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd