Division, Mathematics

Before taking up division of polynomials, let us acquaint ourselves with some basics. Suppose we are asked to divide 16 by 2. We know that on dividing 16 by 2 we get 8. In mathematics we call 16, 2 and 8 by specific names. 16 is called dividend, 2 is called the divisor and 8 is the quotient. However, it is not always that we get an integer like 8 when we divide a number by another. For instance, divide 9 by 2. In addition to the dividend (9), divisor (2) and quotient (4) we are left with another term 1. This is referred to as the remainder. When the dividend is not exactly divisible by the divisor we get a remainder. We find these terms even when one expression is divided by another. Also we follow these rules.

  1. We arrange the terms of the divisor and the dividend in ascending or descending powers of some common letter. Ascending order refers to arranging terms from lower power to higher powers and descending orders refers to opposite of this. Usually we write them in the descending order.

  2. Divide the term on the left of the dividend by the term left of the divisor and put the result in the quotient.

  3. Multiply the whole divisor by this number (quotient) and put the resultant product under the dividend.

  4. Subtract the product from the dividend and bring down the required number of terms as may be deemed necessary.

  5. Repeat this procedure until all the terms in the dividend have been brought down.

We understand this with the help of a couple of examples.

Example 

Divide x2 + 4x + 4 by x + 2.

We find that the terms of the dividend (x2 + 4x + 4) and the divisor (x + 2) are already in the descending order. The left most term in the dividend is x2, while in the divisor it is x. We find the quotient as

629_division.png

We multiply the divisor x + 2 with this quotient x. We get x2 + 2x. We write this under the dividend as shown.

Others

  x + 2 )

x2 + 4x + 4

( x + 2

 

 (-)

x2 + 2x 

 


 

 

         2x + 4

 

 

 

(-)    2x + 4  

 


 

 

                 0

 


On subtracting x2 + 2x from the dividend we obtain 2x + 4. (x2 + 4x + 4 - (x2 + 2x)    = x2 + 4x + 4 - x2 - 2x). We write this expression as shown above.

At this stage, we take the left most quantity of the difference (dividend - product) and that of the divisor and obtain their quotient. It will be 

2029_division1.png

Since the sign of the quotient is positive we write it as shown. Then we multiply x + 2 with 2. That will be 2x + 4. We write under the difference got earlier and subtract it from the difference. We get 2x + 4 - (2x + 4) = 2x + 4 - 2x - 4 = 0. This is shown in the example above. Since the dividend is exactly divisible by the divisor the remainder is zero.

After solving this problem can we say that x + 2 is a factor of x2 + 4x + 4? Of course we can. As we write 8 = 2.4 or 1.8, we can write

                            x2 + 4x + 4 = (x + 2)(x + 2)

(Note: Division of expressions where some of the terms are fractions is also carried out in the same manner we have seen above.)

Posted Date: 9/13/2012 3:15:49 AM | Location : United States







Related Discussions:- Division, Assignment Help, Ask Question on Division, Get Answer, Expert's Help, Division Discussions

Write discussion on Division
Your posts are moderated
Related Questions

Q. Sum and Difference Identities? Ans. These six sum and difference identities express trigonometric functions of (u ± v) as functions of u and v alone.

I don''t know how to do the next step like if I had 73 divided by 9 wouldn''t 7 go into nine 1 time then you have to do something else but that is the part I don''t understand

THE CURVE C HAS POLAR EQUATION R=[X^1/2][E^X^2/PI]. WHERE X IS GREATER THAN OR EQUAL TO 0 BUT LESS THAN OR EQUAL TO PI. THE AREA OF THE FINITE REGION BOUNDED BY C AND THE LINE X EQ

2.46825141458*1456814314.446825558556

An initial species population is y(0) = 3000. At t=0 the population starts to grow exponentially with a doubling time of 2 years. Mark the only correct statement: a)    The per

IF 7 AND 2 ARE TWO ROOTS OF THE EQUATION |X 3 7 2 X 2 7 6 X |=0 THEN FIND THE THIRD ROOT IS

Problem1: Find the general solution on -π/2 Dy/dx +(tan x)y =(sin 2 x)y 4

Determine or find out if the subsequent series is convergent or divergent.  If it converges find out its value. Solution To find out if the series is convergent we fir

Integrate following. ∫ -2   2 4x 4 - x 2   + 1dx Solution In this case the integrand is even & the interval is accurate so, ∫ -2   2 4x 4 - x 2   + 1dx = 2∫ o