Differentiate product rule functions, Mathematics

Assignment Help:

Differentiate following functions.

1348_product rules.png

Solution

At this point there in fact isn't a lot of cause to use the product rule. 

We will utilize the product rule.  As we add up more functions to our repertoire and as the functions become more complexes the product rule will become more useful and in several cases required.

Note as well that we took the derivative of this function in the previous section and didn't use the product rule at that point.  However, we have to get the same result here as we did then.

By converting the radical to a fractional exponent as always, we get.

                                                y = x 2/3 (2 x - x2 )

Now let's take the derivative.  Hence we take the derivative of the first function times the second then add up on to that the first function times the derivative of the second function.

                                         y′ = (2/3) x -1/3 (2 x - x2 ) + x 2/3 ( 2 - 2 x )

                          y′ =(4/3)x(2/3)-(2/3) x(5/3) +2x (2/3) -2x (5/3) =(10/3) x(2/3) -(8/3)x(5/3)


Related Discussions:- Differentiate product rule functions

Volume, #given that the perimeter of the buildig is 108m and the area of th...

#given that the perimeter of the buildig is 108m and the area of the floor is 138m, find the volume of the screed in m3 if it is 30mm thick

Gauss-siedel or newton-rapson method, A one-line diagram of a simple three-...

A one-line diagram of a simple three-bus power system is shown in Figure 1 with generation at bus 1. The magnitude of voltage at bus 1 is adjusted to 1.05 per unit. The scheduled l

Inverse functions, We have seen that if y is a function of x, then fo...

We have seen that if y is a function of x, then for each given value of x, we can determine uniquely the value of y as per the functional relationship. For some f

Differentiate inverse tangent functions, Differentiate the following functi...

Differentiate the following functions. (a) f (t ) = 4 cos -1 (t ) -10 tan -1 (t ) (b)  y = √z sin -1 ( z ) Solution (a) Not much to carry out with this one other

Fractions, how do you convert in a quicker way?

how do you convert in a quicker way?

Rate of change interpretation of derivative, Rate of Change : The first in...

Rate of Change : The first interpretation of derivative is rate of change.  It was not the primary problem which we looked at in the limit chapter, however it is the most signific

Algebra, Evaluate: 30 - 12÷3×2 =

Evaluate: 30 - 12÷3×2 =

common divisors greater than one, Let R be the relation on Z + defined by...

Let R be the relation on Z + defined by aRb iff gcd(a; b) = 1 (that is, a and b have no common divisors greater than one). Explain whether R is reflexive, irreflexive, symmetri

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd