Differentiate product rule functions, Mathematics

Assignment Help:

Differentiate following functions.

1348_product rules.png

Solution

At this point there in fact isn't a lot of cause to use the product rule. 

We will utilize the product rule.  As we add up more functions to our repertoire and as the functions become more complexes the product rule will become more useful and in several cases required.

Note as well that we took the derivative of this function in the previous section and didn't use the product rule at that point.  However, we have to get the same result here as we did then.

By converting the radical to a fractional exponent as always, we get.

                                                y = x 2/3 (2 x - x2 )

Now let's take the derivative.  Hence we take the derivative of the first function times the second then add up on to that the first function times the derivative of the second function.

                                         y′ = (2/3) x -1/3 (2 x - x2 ) + x 2/3 ( 2 - 2 x )

                          y′ =(4/3)x(2/3)-(2/3) x(5/3) +2x (2/3) -2x (5/3) =(10/3) x(2/3) -(8/3)x(5/3)


Related Discussions:- Differentiate product rule functions

Find the common difference of an ap, Find the common difference of an AP wh...

Find the common difference of an AP whose first term is 100 and sum of whose first 6 terms is 5 times the sum of next 6 terms. Ans:    a = 100 APQ a 1 + a 2 + ....... a 6

Find and classify all the equilibrium solutions, Find and classify all the ...

Find and classify all the equilibrium solutions to the subsequent differential equation. y' = y 2 - y - 6 Solution First, get the equilibrium solutions. It is generally

Complex numbers, Complex Numbers In the radicals section we noted that...

Complex Numbers In the radicals section we noted that we won't get a real number out of a square root of a negative number.  For example √-9 isn't a real number as there is no

prove that 2a=b+c, If the roots of the equation (a-b) x 2 + (b-c) x+ (...

If the roots of the equation (a-b) x 2 + (b-c) x+ (c - a)= 0 are equal. Prove that 2a=b+c. Ans:    (a-b) x 2 + (b-c) x+ (c - a) = 0 T.P 2a = b + c B 2 - 4AC = 0

Fundamental theorem of integral facts , Fundamental Theorem of Calculus, Pa...

Fundamental Theorem of Calculus, Part II  Assume f(x) is a continuous function on [a,b] and also assume that F(x) is any anti- derivative for f(x). Hence, a ∫ b f(x) dx =

Interest, kolushushi borrowed tsh 250000/- and paid135000/- as interest in ...

kolushushi borrowed tsh 250000/- and paid135000/- as interest in 3 years. what rate of interest was paid

Integration, Integration of square root of sin

Integration of square root of sin

Determine the conditional probability, Consider a class of 55 students. The...

Consider a class of 55 students. The student names are placed in a hat and 3 names are randomly drawn without replacement. a) If the first person drawn was named the class presi

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd