Basic algebraic properties of real numbers, Mathematics

Assignment Help:

These can be expressed in terms of two fundamental operations of addition and multiplication.

If a, b and c are any three real numbers, then;

    1.          i.  a + b = b + a

This property is called commutative property of addition. According to this property, addition can be carried out in any order and irrespective of this we obtain the same result.

  1. a.b = b.a

This property is called commutative property of multiplication.

    2.          i.   (a + b) + c = a + ( b + c)

This property is referred to as associative property of addition. According to this property, elements can be grouped according to any manner and irrespective of the grouping we obtain the same result.

  1. (a.b).c = a.(b.c)

This property is referred to as the associative property of multiplication.

      3.           a.(b + c) = a.b + a.c or (a + b).c = a.c + b.c

This property is referred to as distributive property. This is generally employed to expand a product into a sum or the other way round. That is, to rewrite a sum as a product.

      4.        i.   a + 0 = 0 + a = a 

This property is referred to as identity property under addition. That is, 0 when added to a real number returns back the number itself which is same or identical to itself. Thus 0 is the identity element under addition.

  1. a.1 = 1.a = a   

This property is referred to as identity property under multiplication. That is, when a real number is multiplied by 1, we get back the same number.

Thus the element 1 is the multiplicative identity.

         5.    i.    a + (-a) = (-a) + a = 0

This property is referred to as inverse property under addition. According to this property, for every element a, there exists another element - a such that the addition of the both gives us zero. The element - a is referred to as the additive inverse of the element a. On a number line, an element and its additive inverse lie at equi-distant from the origin.

  1.  1212_algebraic properties.png

This property is referred to as inverse property under multiplication. According to this property for every element a, a ≠ 0, there exists another element 1/a such that the multiplication of a and 1/a results in 1. The element 1/a is referred to as multiplicative inverse element.

     6.        i.   If a + x = a + y, then x = y.   

This property is referred to as the cancelation property. According to this property a constant quantity when present on both sides of the equation can be canceled without disturbing the balance which exists between the expressions.

  1. If a≠0 and ax = ay, then x = y.

This property is referred to as the cancelation property under multiplication.

     7.          i.   a.0 = 0.a = 0

This property is referred to as the zero factor property. According to this property any real number a, if multiplied by zero would yield a zero. This can be also put as: if one of the factors happens to be zero, irrespective of other factors, the product of all these factors would yield a zero.

  1. If a.b = 0, then a = 0 or b = 0 or both.

According to this property, the product of any two real numbers a and b is zero if one of them happens to be zero, that is either a = 0 or b = 0 or both of them happen to be equal to zero.


Related Discussions:- Basic algebraic properties of real numbers

Differential equations and group methods, solve the differential equation ...

solve the differential equation dy/dx=f(y)x^n+g(y)x^m by finding a one-parameter group leaving it invariant

Math, The Timbuktu post office has only 3 cents and 7 cents stamps having r...

The Timbuktu post office has only 3 cents and 7 cents stamps having run out of all other denominations. What are the six amounts of postage that cannot be created? How do you know

Explain expressions, Explain Expressions ? "One set of absolute value s...

Explain Expressions ? "One set of absolute value signs can only take the absolute value of one number." For example, For the absolute value of negative six plus three,

Subspace of r containing n, Give an example of each of the following given ...

Give an example of each of the following given below . You do not require to give any justi cation. (a) A nonempty, bounded subset of Q with no in mum in Q. (b) A subspace of

Conclude the values of the six trigonometric functions, Conclude the values...

Conclude the values of the six trigonometric functions: Conclude the values of the six trigonometric functions of an angle formed through the x-axis and a line connecting the

Quadratic equation, can anyone explain me the concept of quadratic equation...

can anyone explain me the concept of quadratic equation?

How much is invested at 8% if the total amount of interest, Kevin invested ...

Kevin invested $4,000 in an account which earns 6% interest per year and $x in a different account that earns 8% interest per year. How much is invested at 8% if the total amount o

What is the difference between the two models listed above?, E1) What is th...

E1) What is the difference between the two models listed above? Which is more difficult for children to understand? E2) List some activities and word problems that you would exp

Rational expressions, Now we have to look at rational expressions. A ration...

Now we have to look at rational expressions. A rational expression is a fraction wherein the numerator and/or the denominator are polynomials.  Here are some examples of rational e

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd